Free Vibration of an Euler-Bernoulli Beam with Arbitrary Nonuniformities and Discontinuities

被引:4
|
作者
Sinha, Alok [1 ]
机构
[1] Penn State Univ, Mech Engn, University Pk, PA 16802 USA
关键词
Euler Bernoulli Beams; Transverse Vibrations; Flexural Rigidity; Young's Modulus; Linear Interpolation; Cantilever Beam; Computer Programs; Dirac Delta Function; Galerkin Method;
D O I
10.2514/1.J060745
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
引用
收藏
页码:4805 / 4808
页数:4
相关论文
共 50 条
  • [31] The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam
    Liu, Yucheng
    Gurram, Chandra S.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (11-12) : 1545 - 1552
  • [32] Free Vibration Analysis of Cracked Euler-Bernoulli Beam by Laplace Transformation Considering Stiffness Reduction
    Zhao, Xingzhuang
    ROMANIAN JOURNAL OF ACOUSTICS AND VIBRATION, 2019, 16 (02): : 166 - 173
  • [33] Analytical solution to impact between a particle and an Euler-Bernoulli beam at arbitrary positon on the beam
    Jiangsu Key Laboratory of Structural Engineering, Suzhou University of Technology and Science, Suzhou 215011, China
    不详
    J Vib Shock, 2008, 1 (163-166):
  • [34] Vibration suppression of an Euler-Bernoulli beam by backstepping iterative learning control
    Liu, Yu
    Zhan, Wenkang
    Gao, Huanli
    Liu, Haiming
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (16): : 2630 - 2637
  • [35] Variation of fraction in FOPID controller for vibration control of Euler-Bernoulli beam
    Ali, Muzamil
    Khan, Muhammad Waleed
    Abid, Muhammad
    Rehman, Aman Ur
    SN APPLIED SCIENCES, 2020, 2 (12):
  • [36] VIBRATION OF AN EULER-BERNOULLI BEAM OF CONSTANT DEPTH AND WITH LINEARLY VARYING BREADTH
    NAGULESWARAN, S
    JOURNAL OF SOUND AND VIBRATION, 1992, 153 (03) : 509 - 522
  • [37] VIBRATION ANALYSIS OF EULER-BERNOULLI BEAM BASED ON THE VARIATIONAL ITERATION METHOD
    Ozer, Halil
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION, 2010,
  • [38] Unsteady vibration model of the euler-bernoulli beam taking into account diffusion
    Zemskov, A. V.
    Tarlakovskii, D. V.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [39] Stabilization of a nonlinear Euler-Bernoulli beam
    Benterki, Djamila
    Tatar, Nasser-Eddine
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 479 - 496
  • [40] THE INVERSE PROBLEM FOR THE EULER-BERNOULLI BEAM
    GLADWELL, GML
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832): : 199 - 218