A deep neural network with subdomain adaptation for motor imagery brain-computer interface

被引:8
|
作者
Zheng, Minmin [1 ,2 ]
Yang, Banghua [1 ]
机构
[1] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[2] Putian Univ, Sch Mech & Elect Engn, Putian, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Motor imagery (MI); Transfer learning; Local maximum mean discrepancy (LMMD); Distance within each class (DWC); Distance between classes within each domain (DBCWD); EEG; CLASSIFICATION;
D O I
10.1016/j.medengphy.2021.08.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: The nonstationarity problem of EEG is very serious, especially for spontaneous signals, which leads to the poor effect of machine learning related to spontaneous signals, especially in related tasks across time, which correspondingly limits the practical use of brain-computer interface (BCI). Objective: In this paper, we proposed a new transfer learning algorithm, which can utilize the labeled motor imagery (MI) EEG data at the previous time to achieve better classification accuracies for a small number of labeled EEG signals at the current time. Methods: We introduced an adaptive layer into the full connection layer of a deep convolution neural network. The objective function of the adaptive layer was designed to minimize the Local Maximum Mean Discrepancy (LMMD) and the prediction error while minimizing the distance within each class (DWC) and maximizing the distance between classes within each domain (DBCWD). We verified the effectiveness of the proposed algorithm on two public datasets. Results: The classification accuracy of the proposed algorithm was higher than other comparison algorithms, and the paired t-test results also showed that the performance of the proposed algorithm was significantly different from that of other algorithms. The results of the confusion matrix and feature visualization showed the effectiveness of the proposed algorithm. Conclusion: Experimental results showed that the proposed algorithm can achieve higher classification accuracy than other algorithms when there was only a small amount of labeled MI EEG data at the current time. It can be promising to be applied to the field of BCI.
引用
下载
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [41] Discrimination of Rest, Motor Imagery and Movement for Brain-Computer Interface Applications
    Ozturk, Nedime
    Yilmaz, Bulent
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [42] MOTOR IMAGERY OF LOWER LIMBS MOVEMENTS TO CONTROL BRAIN-COMPUTER INTERFACE
    Bobrova, E. V.
    Reshetnikova, V. V.
    Frolov, A. A.
    Gerasimenko, Y. P.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2019, 69 (05) : 529 - 540
  • [43] Asynchronous Motor Imagery Brain-Computer Interface for Simulated Drone Control
    Choi, Jin Woo
    Kim, Byung Hyung
    Jo, Sungho
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 133 - 137
  • [44] Phase-Locking Factor in a Motor Imagery Brain-Computer Interface
    Carreiras, Carlos
    de Almeida, Luis Borges
    Miguel Sanches, J.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2877 - 2880
  • [45] Binarization Methods for Motor-Imagery Brain-Computer Interface Classification
    Hersche, Michael
    Benini, Luca
    Rahimi, Abbas
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2020, 10 (04) : 567 - 577
  • [46] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [47] Genetic Programming for Feature Extraction in Motor Imagery Brain-Computer Interface
    de Souza, Gabriel Henrique
    Bernardino, Heder Soares
    Vieira, Alex Borges
    Correa Barbosa, Helio Jose
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021), 2021, 12981 : 227 - 238
  • [48] Implementation of a brain-computer interface based on three states of motor imagery
    Wang, Yijun
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5059 - 5062
  • [49] A Neurofeedback training paradigm for motor imagery based Brain-Computer Interface
    Xia, Bin
    Zhang, Qingmei
    Xie, Hong
    Li, Jie
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [50] Execution, assessment and improvement methods of motor imagery for brain-computer interface
    Tian G.
    Chen J.
    Ding P.
    Gong A.
    Wang F.
    Luo J.
    Dong Y.
    Zhao L.
    Dang C.
    Fu Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (03): : 434 - 446