Small area estimation of complex parameters under unit-level models with skew-normal errors

被引:24
|
作者
Diallo, Mamadou S. [1 ]
Rao, J. N. K. [2 ]
机构
[1] United Nations Int Childrens Fund UNICEF, Data & Analyt, New York, NY 10017 USA
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
empirical best estimator; nested-error regression models; poverty measures; small area estimation of complex parameters; POVERTY;
D O I
10.1111/sjos.12336
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The widely used Elbers-Lanjouw-Lanjouw (ELL) method of estimating complex parameters for areas with small sample sizes uses a fitted nested-error model based on survey data to create simulated censuses of the variable of interest. The complex parameters obtained from each simulated censuses are then averaged to get the estimate. An empirical best (EB) method, under the nested-error model with normal errors, is significantly more efficient, in terms of mean square error (MSE), than the ELL method when the normality assumption holds. However, it can perform poorly in terms of MSE when the model errors are not normally distributed. We relax normality by assuming skew-normal errors, derive EB estimators, and study their MSE relative to EB based on normality and ELL. We propose bootstrap methods for MSE estimation. We also study an improvement to ELL by conditioning on the area random effects and without parametric assumptions on the errors.
引用
收藏
页码:1092 / 1116
页数:25
相关论文
共 50 条
  • [21] Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors
    da Silva Ferreira, Clecio
    Paula, Gilberto A.
    Lana, Gustavo C.
    COMPUTATIONAL STATISTICS, 2022, 37 (01) : 445 - 468
  • [22] Addressing Covariate Lack in Unit-Level Small Area Models Using GAMLSS
    Mori, Lorenzo
    Ferrante, Maria Rosaria
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 34 - 40
  • [23] Shrinkage estimation of location parameters in a multivariate skew-normal distribution
    Kubokawa, Tatsuya
    Strawderman, William E.
    Yuasa, Ryota
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (08) : 2008 - 2024
  • [24] Small area prediction for a unit-level lognormal model
    Berg, Emily
    Chandra, Hukum
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 78 : 159 - 175
  • [25] Diagnostics for skew-normal nonlinear regression models with AR(1) errors
    Xie, Feng-Chang
    Lin, Jin-Guan
    Wei, Bo-Cheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4403 - 4416
  • [26] Estimation in skew-normal linear mixed measurement error models
    Kheradmandi, Ameneh
    Rasekh, Abdolrahman
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 : 1 - 11
  • [27] Robust portfolio estimation under skew-normal return processes
    Taniguchi, Masanobu
    Petkovic, Alexandre
    Kase, Takehiro
    DiCiccio, Thomas
    Monti, Anna Clara
    EUROPEAN JOURNAL OF FINANCE, 2015, 21 (13-14): : 1091 - 1112
  • [28] Tests in variance components models under skew-normal settings
    Ye, Rendao
    Wang, Tonghui
    Sukparungsee, Saowanit
    Gupta, Arjun K.
    METRIKA, 2015, 78 (07) : 885 - 904
  • [29] Tests in variance components models under skew-normal settings
    Rendao Ye
    Tonghui Wang
    Saowanit Sukparungsee
    Arjun K. Gupta
    Metrika, 2015, 78 : 885 - 904
  • [30] Empirical Bayes methods in nested error regression models with skew-normal errors
    Tatsuhiko Tsujino
    Tatsuya Kubokawa
    Japanese Journal of Statistics and Data Science, 2019, 2 : 375 - 403