Small area estimation of complex parameters under unit-level models with skew-normal errors

被引:24
|
作者
Diallo, Mamadou S. [1 ]
Rao, J. N. K. [2 ]
机构
[1] United Nations Int Childrens Fund UNICEF, Data & Analyt, New York, NY 10017 USA
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
empirical best estimator; nested-error regression models; poverty measures; small area estimation of complex parameters; POVERTY;
D O I
10.1111/sjos.12336
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The widely used Elbers-Lanjouw-Lanjouw (ELL) method of estimating complex parameters for areas with small sample sizes uses a fitted nested-error model based on survey data to create simulated censuses of the variable of interest. The complex parameters obtained from each simulated censuses are then averaged to get the estimate. An empirical best (EB) method, under the nested-error model with normal errors, is significantly more efficient, in terms of mean square error (MSE), than the ELL method when the normality assumption holds. However, it can perform poorly in terms of MSE when the model errors are not normally distributed. We relax normality by assuming skew-normal errors, derive EB estimators, and study their MSE relative to EB based on normality and ELL. We propose bootstrap methods for MSE estimation. We also study an improvement to ELL by conditioning on the area random effects and without parametric assumptions on the errors.
引用
收藏
页码:1092 / 1116
页数:25
相关论文
共 50 条
  • [1] Small area estimation of additive parameters under unit-level generalized linear mixed models
    Hobza, Tomas
    Marhuenda, Yolanda
    Morales, Domingo
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2020, 44 (01) : 3 - 38
  • [2] Small area estimation under unit-level temporal linear mixed models
    Morales, Domingo
    Santamaria, Laureano
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (09) : 1592 - 1620
  • [3] Small area estimation of labour force indicators under unit-level multinomial mixed models
    Bugallo, Maria
    Esteban, Maria Dolores
    Hobza, Tomas
    Morales, Domingo
    Perez, Agustin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 188 (01) : 241 - 270
  • [4] A Hierarchical Bayes Unit-Level Small Area Estimation Model for Normal Mixture Populations
    Goyal, Shuchi
    Datta, Gauri Sankar
    Mandal, Abhyuday
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (01): : 215 - 241
  • [5] A Hierarchical Bayes Unit-Level Small Area Estimation Model for Normal Mixture Populations
    Shuchi Goyal
    Gauri Sankar Datta
    Abhyuday Mandal
    Sankhya B, 2021, 83 : 215 - 241
  • [6] Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models
    Hobza, Tomas
    Morales, Domingo
    Santamaria, Laureano
    TEST, 2018, 27 (02) : 270 - 294
  • [7] Small area prediction of general small area parameters for unit-level count data
    Berg, Emily
    SURVEY METHODOLOGY, 2023, 49 (02)
  • [8] Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models
    Tomáš Hobza
    Domingo Morales
    Laureano Santamaría
    TEST, 2018, 27 : 270 - 294
  • [9] Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data
    Breidenbach, Johannes
    Magnussen, Steen
    Rahlf, Johannes
    Astrup, Rasmus
    REMOTE SENSING OF ENVIRONMENT, 2018, 212 : 199 - 211
  • [10] Mean-squared errors of small-area estimators under a unit-level multivariate model
    Baillo, Amparo
    Molina, Isabel
    STATISTICS, 2009, 43 (06) : 553 - 569