Hierarchical multi-swarm cooperative teaching-learning-based optimization for global optimization

被引:17
|
作者
Zou, Feng [1 ]
Chen, Debao [1 ]
Lu, Renquan [2 ]
Wang, Peng [1 ]
机构
[1] HuaiBei Normal Univ, Sch Phys & Elect Informat, Huaibei 235000, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical multi-swarm cooperation; Teaching-learning-based optimization; Gaussian sampling learning; Regrouping; Latin hypercube sampling; POWER DISPATCH PROBLEM; DIFFERENTIAL EVOLUTION; ALGORITHM; LOCATION; DESIGN;
D O I
10.1007/s00500-016-2237-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical cooperation mechanism, which is inspired by the features of specialization and cooperation in the social organizations, has been successfully used to increase the diversity of the population and avoid premature convergence for solving complex optimization problems. In this paper, a new two-level hierarchical multi-swarm cooperative TLBO variant called HMCTLBO is presented to solve global optimization problems. In the proposed HMCTLBO algorithm, all learners are randomly divided into several sub-swarms with equal amounts of learners at the bottom level of the hierarchy. The learners of each swarm evolve only in their corresponding swarm in parallel independently to maintain the diversity and improve the exploration capability of the population. Moreover, all the best learners from each swarm compose the new swarm at the top level of the hierarchy, and each learner of the swarm evolves according to Gaussian sampling learning. Furthermore, a randomized regrouping strategy is performed, and a subspace searching strategy based on Latin hypercube sampling is introduced to maintain the diversity of the population. To verify the performance of the proposed approaches, 48 benchmark test functions are evaluated. Conducted experiments indicate that the proposed HMCTLBO algorithm is competitive to some existing TLBO variants and other optimization algorithms.
引用
收藏
页码:6983 / 7004
页数:22
相关论文
共 50 条
  • [21] A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization
    Zhang, Jiuzhong
    Ding, Xueming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (06) : 958 - 967
  • [22] Teaching-Learning-Based Optimization Enhanced With Multiobjective Sorting Based and Cooperative Learning
    Li, Wei
    Fan, Yaochi
    Xu, Qingzheng
    IEEE ACCESS, 2020, 8 : 65923 - 65937
  • [23] Multi-opposition Teaching-Learning-based Optimization
    He J.
    Peng Z.
    Cui D.
    Li Q.
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2019, 51 (06): : 159 - 167
  • [24] Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Tan, Lijing
    Duan, Qiqi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (01) : 4 - 14
  • [25] Teaching-learning-based optimization with a fuzzy grouping learning strategy for global numerical optimization
    Zhai, Zhibo
    Li, Shujuan
    Liu, Yong
    Li, Zhanlong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (06) : 2345 - 2356
  • [26] Teaching-learning-based optimization with differential and repulsion learning for global optimization and nonlinear modeling
    Zou, Feng
    Chen, Debao
    Lu, Renquan
    Li, Suwen
    Wu, Lehui
    SOFT COMPUTING, 2018, 22 (21) : 7177 - 7205
  • [27] Chaotic Teaching-Learning-Based Optimization with Levy Flight for Global Numerical Optimization
    He, Xiangzhu
    Huang, Jida
    Rao, Yunqing
    Gao, Liang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [28] Closed-Loop Teaching-Learning-Based Optimization Algorithm for Global Optimization
    Zheng, Shuaiyin
    Ren, Ziwu
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2120 - 2125
  • [29] An improved teaching-learning-based optimization algorithm for solving global optimization problem
    Chen, Debao
    Zou, Feng
    Li, Zheng
    Wang, Jiangtao
    Li, Suwen
    INFORMATION SCIENCES, 2015, 297 : 171 - 190
  • [30] An Improved Teaching-Learning-Based Optimization with the Social Character of PSO for Global Optimization
    Zou, Feng
    Chen, Debao
    Wang, Jiangtao
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016