Hierarchical multi-swarm cooperative teaching-learning-based optimization for global optimization

被引:17
|
作者
Zou, Feng [1 ]
Chen, Debao [1 ]
Lu, Renquan [2 ]
Wang, Peng [1 ]
机构
[1] HuaiBei Normal Univ, Sch Phys & Elect Informat, Huaibei 235000, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical multi-swarm cooperation; Teaching-learning-based optimization; Gaussian sampling learning; Regrouping; Latin hypercube sampling; POWER DISPATCH PROBLEM; DIFFERENTIAL EVOLUTION; ALGORITHM; LOCATION; DESIGN;
D O I
10.1007/s00500-016-2237-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical cooperation mechanism, which is inspired by the features of specialization and cooperation in the social organizations, has been successfully used to increase the diversity of the population and avoid premature convergence for solving complex optimization problems. In this paper, a new two-level hierarchical multi-swarm cooperative TLBO variant called HMCTLBO is presented to solve global optimization problems. In the proposed HMCTLBO algorithm, all learners are randomly divided into several sub-swarms with equal amounts of learners at the bottom level of the hierarchy. The learners of each swarm evolve only in their corresponding swarm in parallel independently to maintain the diversity and improve the exploration capability of the population. Moreover, all the best learners from each swarm compose the new swarm at the top level of the hierarchy, and each learner of the swarm evolves according to Gaussian sampling learning. Furthermore, a randomized regrouping strategy is performed, and a subspace searching strategy based on Latin hypercube sampling is introduced to maintain the diversity of the population. To verify the performance of the proposed approaches, 48 benchmark test functions are evaluated. Conducted experiments indicate that the proposed HMCTLBO algorithm is competitive to some existing TLBO variants and other optimization algorithms.
引用
收藏
页码:6983 / 7004
页数:22
相关论文
共 50 条
  • [1] Hierarchical multi-swarm cooperative teaching–learning-based optimization for global optimization
    Feng Zou
    Debao Chen
    Renquan Lu
    Peng Wang
    Soft Computing, 2017, 21 : 6983 - 7004
  • [2] An ensemble multi-swarm teaching-learning-based optimization algorithm for function optimization and image segmentation
    Jiang, Ziqi
    Zou, Feng
    Chen, Debao
    Cao, Siyu
    Liu, Hui
    Guo, Wei
    APPLIED SOFT COMPUTING, 2022, 130
  • [3] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [4] A Center Multi-swarm Cooperative Particle Swarm Optimization with Ratio and Proportion Learning
    Shenzhen
    Ge, Jiaoju
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT I, 2017, 10385 : 189 - 197
  • [5] An Experience Information Teaching-Learning-Based Optimization for Global Optimization
    Wang, Zhuo
    Lu, Renquan
    Chen, Debao
    Zou, Feng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1202 - 1214
  • [6] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [7] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    COMPUTING, 2020, 102 (07) : 1587 - 1626
  • [8] Markerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization
    Saini, Sanjay
    Zakaria, Nordin
    Rohaya, Dayang
    Rambli, Awang
    Sulaiman, Suziah
    PLOS ONE, 2015, 10 (05):
  • [9] Dynamic multi-swarm global particle swarm optimization
    Xuewen Xia
    Yichao Tang
    Bo Wei
    Yinglong Zhang
    Ling Gui
    Xiong Li
    Computing, 2020, 102 : 1587 - 1626
  • [10] A Multi-Swarm Bat Algorithm for Global Optimization
    Wang, Gai-Ge
    Chang, Bao
    Zhang, Zhaojun
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 480 - 485