Partially Linear Additive Gaussian Graphical Models

被引:0
|
作者
Geng, Sinong [1 ]
Yan, Minhao [2 ]
Kolar, Mladen [3 ]
Koyejo, Oluwasanmi [4 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Charles H Dyson Sch Appl Econ & Management, Ithaca, NY USA
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[4] Univ Illinois, Dept Comp Sci, Champaign, IL USA
关键词
FUNCTIONAL CONNECTIVITY; SEMIPARAMETRIC ESTIMATION; HEAD MOTION; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a partially linear additive Gaussian graphical model (PLA-GGM) for the estimation of associations between random variables distorted by observed confounders. Model parameters are estimated using an L-1-regularized maximal pseudo-profile likelihood estimator (MaPPLE) for which we prove root n-sparsistency. Importantly, our approach avoids parametric constraints on the effects of confounders on the estimated graphical model structure. Empirically, the PLA-GGM is applied to both synthetic and real-world datasets, demonstrating superior performance compared to competing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On skewed Gaussian graphical models
    Sheng, Tianhong
    Li, Bing
    Solea, Eftychia
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [42] Positivity for Gaussian graphical models
    Draisma, Jan
    Sullivant, Seth
    Talaska, Kelli
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) : 661 - 674
  • [43] On a dualization of graphical Gaussian models
    Kauermann, G
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 105 - 116
  • [44] Estimation of partially known Gaussian graphical models with score-based structural priors
    Sevilla, Martin
    Marques, Antonio G.
    Segarra, Santiago
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [45] Liu-type estimator in semiparametric partially linear additive models
    Wei, Chuanhua
    Wang, Xiaonan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 459 - 468
  • [46] Robust estimation and variable selection in censored partially linear additive models
    Huilan Liu
    Hu Yang
    Xiaochao Xia
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 88 - 103
  • [47] Empirical Likelihood Inference for the Parameter in Additive Partially Linear EV Models
    Wang, Xiuli
    Chen, Fang
    Lin, Lu
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (19) : 3513 - 3524
  • [48] Additive partially linear models for ultra-high-dimensional regression
    Li, Xinyi
    Wang, Li
    Nettleton, Dan
    [J]. STAT, 2019, 8 (01):
  • [49] Empirical likelihood for partially linear additive errors-in-variables models
    Chuanhua Wei
    Yubo Luo
    Xizhi Wu
    [J]. Statistical Papers, 2012, 53 : 485 - 496
  • [50] An efficient estimation for the parameter in additive partially linear models with missing covariates
    Wang, Xiuli
    Song, Yunquan
    Zhang, Shuxia
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 779 - 801