PRESERVATION OF STRONG NORMALISATION MODULO PERMUTATIONS FOR THE STRUCTURAL λ-CALCULUS

被引:9
|
作者
Accattoli, Beniamino [1 ,2 ]
Kesner, Delia [3 ]
机构
[1] Ecole Polytech, INRIA Saclay, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, F-91128 Palaiseau, France
[3] Univ Paris Diderot, PPS, CNRS, Paris, France
关键词
Lambda-calculus; explicit substitutions; preservation of strong normalisation; CALL-BY-VALUE;
D O I
10.2168/LMCS-8(1:28)2012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by a recent graphical formalism for lambda-calculus based on linear logic technology, we introduce an untyped structural lambda-calculus, called lambda j, which combines actions at a distance with exponential rules decomposing the substitution by means of weakening, contraction and derelicition. First, we prove some fundamental properties of lambda j such as confluence and preservation of beta-strong normalisation. Second, we add a strong bisimulation to lambda j by means of an equational theory which captures in particular Regnier's sigma-equivalence. We then complete this bisimulation with two more equations for (de) composition of substitutions and we prove that the resulting calculus still preserves beta-strong normalization. Finally, we discuss some consequences of our results.
引用
下载
收藏
页数:44
相关论文
共 50 条
  • [41] Strong normalisation of cut-elimination in classical logic
    Urban, C
    Bierman, GM
    TYPED LAMBDA CALCULI AND APPLICATIONS, 1999, 1581 : 365 - 380
  • [42] The Structural λ-Calculus
    Accattoli, Beniamino
    Kesner, Delia
    COMPUTER SCIENCE LOGIC, 2010, 6247 : 381 - +
  • [43] NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION
    Bernadet, Alexis
    Graham-Lengrand, Stephane
    LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (04)
  • [44] Cryptographically strong permutations from the butterfly structure
    Kangquan Li
    Chunlei Li
    Tor Helleseth
    Longjiang Qu
    Designs, Codes and Cryptography, 2021, 89 : 737 - 761
  • [45] Strong normalisation of cut-elimination in classical logic
    Urban, C
    Bierman, GM
    FUNDAMENTA INFORMATICAE, 2001, 45 (1-2) : 123 - 155
  • [46] CALCULUS OF VARIATIONS WITH STRONG NONLINEARITY
    丁夏畦
    罗佩珠
    顾永耕
    方惠中
    Science China Mathematics, 1980, (08) : 945 - 955
  • [47] Characterizing of Strong Normalization for Λμ-Calculus
    Shen, Xinxin
    Zheng, Kougen
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [48] Calculus on strong partition cardinals
    Henle, James M.
    MATHEMATICAL LOGIC QUARTERLY, 2006, 52 (06) : 585 - 594
  • [49] CALCULUS OF VARIATIONS WITH STRONG NONLINEARITY
    DING, XX
    LUO, PZ
    GU, YG
    FANG, HH
    SCIENTIA SINICA, 1980, 23 (08): : 945 - 955
  • [50] CALCULUS OF VARIATIONS WITH STRONG NONLINEARITY
    丁夏畦
    罗佩珠
    顾永耕
    方惠中
    ScienceinChina,SerA., 1980, Ser.A.1980 (08) : 945 - 955