PRESERVATION OF STRONG NORMALISATION MODULO PERMUTATIONS FOR THE STRUCTURAL λ-CALCULUS

被引:9
|
作者
Accattoli, Beniamino [1 ,2 ]
Kesner, Delia [3 ]
机构
[1] Ecole Polytech, INRIA Saclay, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, F-91128 Palaiseau, France
[3] Univ Paris Diderot, PPS, CNRS, Paris, France
关键词
Lambda-calculus; explicit substitutions; preservation of strong normalisation; CALL-BY-VALUE;
D O I
10.2168/LMCS-8(1:28)2012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by a recent graphical formalism for lambda-calculus based on linear logic technology, we introduce an untyped structural lambda-calculus, called lambda j, which combines actions at a distance with exponential rules decomposing the substitution by means of weakening, contraction and derelicition. First, we prove some fundamental properties of lambda j such as confluence and preservation of beta-strong normalisation. Second, we add a strong bisimulation to lambda j by means of an equational theory which captures in particular Regnier's sigma-equivalence. We then complete this bisimulation with two more equations for (de) composition of substitutions and we prove that the resulting calculus still preserves beta-strong normalization. Finally, we discuss some consequences of our results.
引用
下载
收藏
页数:44
相关论文
共 50 条
  • [1] A note on preservation of strong normalisation in the λ-calculus
    Santo, Jose Espirito
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (11) : 1027 - 1032
  • [2] Confluence and preservation of strong normalisation in an explicit substitutions calculus
    Munoz, C
    11TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1996, : 440 - 447
  • [3] Strong normalisation in the π-calculus
    Yoshida, N
    Berger, M
    Honda, K
    INFORMATION AND COMPUTATION, 2004, 191 (02) : 145 - 202
  • [4] Strong normalisation in the π-calculus
    Yoshida, N
    Berger, M
    Honda, K
    16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2001, : 311 - 322
  • [5] Confluence and strong normalisation of the generalised multiary λ-calculus
    Santo, JE
    Pinto, L
    TYPES FOR PROOFS AND PROGRAMS, 2004, 3085 : 194 - 209
  • [6] Confluence via strong normalisation in an algebraic lambda-calculus with rewriting
    Buiras, Pablo
    Diaz-Caro, Alejandro
    Jaskelioff, Mauro
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (81): : 16 - 29
  • [7] Equivalence classes of permutations modulo excedances
    Baril, Jean-Luc
    Mansour, Toufik
    Petrossian, Armen
    JOURNAL OF COMBINATORICS, 2014, 5 (04) : 453 - 469
  • [8] LA, permutations, and the Hajos Calculus
    Soltys, M
    THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) : 321 - 333
  • [9] Rewriting Modulo beta in the lambda Pi-Calculus Modulo
    Saillard, Ronan
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (185): : 87 - 101
  • [10] Unicyclic strong permutations
    Gravel, Claude
    Panario, Daniel
    Thomson, David
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (06): : 1211 - 1231