Global solvability of the Maxwell-Bloch equations from nonlinear optics

被引:0
|
作者
Donnat, P [1 ]
Rauch, J [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1007/s002050050017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:291 / 303
页数:13
相关论文
共 50 条
  • [31] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [32] FACTORIZATION ASSUMPTION IN THE SOLUTION OF MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    SANCHEZMONDRAGON, JJ
    TORRESCISNEROS, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1734 - 1734
  • [33] Lattices of Neumann oscillators and Maxwell-Bloch equations
    Saksida, Pavle
    NONLINEARITY, 2006, 19 (03) : 747 - 768
  • [34] Integrability and geometric prequantization of Maxwell-Bloch equations
    Puta, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (03): : 243 - 250
  • [35] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58
  • [36] Homoclinic orbits in the Maxwell-Bloch equations with a probe
    Holm, DD
    Kovacic, G
    Wettergren, TA
    PHYSICAL REVIEW E, 1996, 54 (01): : 243 - 256
  • [37] Numerical Solutions of the Maxwell-Bloch Laser Equations
    Guo, B.-Y.
    Martin, I.
    Perez-Garcia, V. M.
    Vazquez, L.
    Journal of Computational Physics, 129 (01):
  • [38] Soliton solutions of coupled Maxwell-Bloch equations
    Chakravarty, S.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1141 - 1150
  • [39] NONREDUCED MAXWELL-BLOCH EQUATIONS AND A CHIRPED SOLITON
    ANDREEV, AV
    PHYSICS LETTERS A, 1993, 179 (01) : 23 - 26
  • [40] Semiconductor laser theory: The Maxwell-Bloch equations
    不详
    SPATIO-TEMPORAL DYNAMICS AND QUANTUM FLUCTUATIONS IN SEMICONDUCTOR LASERS, 2003, 189 : 13 - 24