Unsupervised EEG Analysis for Automated Epileptic Seizure Detection

被引:15
|
作者
Birjandtalab, Javad [1 ]
Pouyan, Maziyar Baran [1 ]
Nourani, Mehrdad [1 ]
机构
[1] Univ Texas Richardson, Qual Life Technol Lab, Richardson, TX 75080 USA
关键词
EEG signals; unsupervised seizure detection; feature extraction; data visualization; SYSTEM;
D O I
10.1117/12.2243622
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] EPILEPTIC SEIZURE PREDICTION BY SCALP EEG ANALYSIS
    Kelly, Kevin M.
    Shiau, D.
    Kern, R. T.
    Chien, J. H.
    Pardalos, P. M.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. EPILEPSIA, 2009, 50 : 30 - 30
  • [22] Epileptic Seizure Detection Based on EEG Signals and CNN
    Zhou, Mengni
    Tian, Cheng
    Cao, Rui
    Wang, Bin
    Niu, Yan
    Hu, Ting
    Guo, Hao
    Xiang, Jie
    [J]. FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [23] Epileptic Seizure Detection from Imbalanced EEG signal
    Romaissa, Debeche
    El Habib Daho, Mostafa
    Chikh, Mohammed Amine
    [J]. 2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [24] Detection of Epileptic Seizure Event and Onset Using EEG
    Ahammad, Nabeel
    Fathima, Thasneem
    Joseph, Paul
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [25] Epileptic Seizure Prediction by Scalp EEG Analysis
    Sackellares, J. Chris
    Shiau, Deng-Shan
    Chien, Jui-Hong
    Halford, Jonathan
    Kelly, Kevin M.
    [J]. ANNALS OF NEUROLOGY, 2009, 66 : S13 - S14
  • [26] Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction
    Emara H.M.
    Elwekeil M.
    Taha T.E.
    El-Fishawy A.S.
    El-Rabaie E.-S.M.
    El-Shafai W.
    El Banby G.M.
    Alotaiby T.
    Alshebeili S.A.
    Abd El-Samie F.E.
    [J]. Annals of Data Science, 2022, 9 (02) : 393 - 428
  • [27] EEG Oscillatory Power and Complexity for Epileptic Seizure Detection
    Abou-Abbas, Lina
    Jemal, Imene
    Henni, Khadidja
    Ouakrim, Youssef
    Mitiche, Amar
    Mezghani, Neila
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [28] Epileptic Seizure Detection Based on Video and EEG Recordings
    Aghaei, Hoda
    Kiani, Mohammad Mandi
    Aghajan, Hamid
    [J]. 2017 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2017,
  • [29] Epileptic seizure detection in EEG using improved entropy
    Gini, Arumai Thangam Phareson
    Queen, Manuel Packiaselvam Flower
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 33 (04) : 325 - 345
  • [30] EEG Sensor-Based Frequency Domain Analysis for Epileptic Seizure Detection
    Parikh, Abhishek
    Suthar, Anilkumar
    Gali, Manvitha
    Mahamkali, Aditya
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1033 - 1040