SPATIO-TEMPORAL CELLULAR AUTOMATA-BASED FILTERING FOR IMAGE SEQUENCE DENOISING: APPLICATION TO FLUOROSCOPIC SEQUENCES

被引:0
|
作者
Priego, Blanca [1 ]
Veganzones, Miguel A. [2 ]
Chanussot, Jocelyn [2 ,3 ]
Amiot, Carole [4 ]
Prieto, Abraham [1 ]
Duro, Richard [1 ]
机构
[1] Univ A Coruna, Integrated Grp Engn Res, Ferrol, A Coruna, Spain
[2] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[3] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
[4] Thales Electron Devices, Velizy Villacoublay, France
关键词
cellular automata; spatio-temporal denoising; low-dose x-ray image; SURE-LET; DOMAIN;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
This work presents a novel spatio-temporal cellular automata-based filtering (STCAF) for image sequence denoising. Most of the methods using cellular automata (CA) for image denoising involve the manual design of the rules that define the behaviour of the automata. This is a complex and not straightforward operation. In order to tackle this problem, this paper proposes to use evolutionary methods to obtain the CA set of rules which produces the best possible denoising under different noise models or/and image sources. This is implemented using a spatio-temporal neighbourhood for each pixel, which significantly improves the results with respect to simple spatio or temporal set of neighbours. The proposed method is tested to reduce the noise in low-dose X-ray image sequences. These data have a severe signal-dependent noise that must be reduced avoiding artifacts while preserving structures of interest for a medical inspection. The proposed method outperforms several state-of-the-art algorithms on both simulated and real sequences.
引用
收藏
页码:548 / 552
页数:5
相关论文
共 50 条
  • [41] Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
    Barboni Miranda, Gisele Helena
    Machicao, Jeaneth
    Bruno, Odemir Martinez
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [42] Exploiting spatio-temporal data for the multiobjective optimization of cellular automata models
    Trunfio, Giuseppe A.
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 81 - 89
  • [43] Exploring the performance of spatio-temporal assimilation in an urban cellular automata model
    Li, Xuecao
    Lu, Hui
    Zhou, Yuyu
    Hu, Tengyun
    Liang, Lu
    Liu, Xiaoping
    Hu, Guohua
    Yu, Le
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (11) : 2195 - 2215
  • [44] Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
    Gisele Helena Barboni Miranda
    Jeaneth Machicao
    Odemir Martinez Bruno
    [J]. Scientific Reports, 6
  • [45] Hardware implementation of a spatio-temporal average filter for real-time denoising of fluoroscopic images
    Genovese, M.
    Bifulco, P.
    De Caro, D.
    Napoli, E.
    Petra, N.
    Romano, M.
    Cesarelli, M.
    Strollo, A. G. M.
    [J]. INTEGRATION-THE VLSI JOURNAL, 2015, 49 : 114 - 124
  • [46] Spatio-temporal filtering of thermal video sequences for heart rate estimation
    Hamedani, Kian
    Bahmani, Zahra
    Mohammadian, Amin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 54 : 88 - 94
  • [47] Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and Video Denoising
    Xu, Xiangyu
    Li, Muchen
    Sun, Wenxiu
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7153 - 7165
  • [48] Automatic Content-Based Temporal Alignment of Image Sequences with Varying Spatio-Temporal Resolution
    Ogden, Samuel R.
    Morse, Bryan S.
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 259 - 266
  • [49] An adaptive statistical method for denoising 4D fluorescence image sequences with preservation of spatio-temporal discontinuities
    Boulanger, J
    Kervrann, C
    Bouthemy, R
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1797 - 1800
  • [50] Occlusion handling in spatio-temporal object-based image sequence matching
    Nietiedt, Simon
    Helmholz, Petra
    Luhmann, Thomas
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 163 - 170