Nonlinear light-matter interaction at terahertz frequencies

被引:194
|
作者
Nicoletti, Daniele [1 ]
Cavalleri, Andrea [1 ,2 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
ADVANCES IN OPTICS AND PHOTONICS | 2016年 / 8卷 / 03期
基金
欧洲研究理事会;
关键词
METAL-INSULATOR-TRANSITION; SPIN DYNAMICS; INDUCED SUPERCONDUCTIVITY; ANTIFERROMAGNETIC ORDER; RAMAN-SCATTERING; CHARGE DYNAMICS; FIELD CONTROL; PHASE; ELECTRON; TEMPERATURE;
D O I
10.1364/AOP.8.000401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Strong optical pulses at mid-infrared and terahertz frequencies have recently emerged as powerful tools to manipulate and control the solid state and especially complex condensed matter systems with strongly correlated electrons. The recent developments in high-power sources in the 0.1-30 THz frequency range, both from table-top laser systems and from free-electron lasers, have provided access to excitations of molecules and solids, which can be stimulated at their resonance frequencies. Amongst these, we discuss free electrons in metals, superconducting gaps and Josephson plasmons in layered superconductors, and vibrational modes of the crystal lattice (phonons), as well as magnetic excitations. This review provides an overview and illustrative examples of how intense terahertz transients can be used to resonantly control matter, with particular focus on strongly correlated electron systems and high-temperature superconductors. (C) 2016 Optical Society of America
引用
收藏
页码:401 / 464
页数:64
相关论文
共 50 条
  • [21] Light-matter interaction at atomic scales
    Gutzler, Rico
    Garg, Manish
    Ast, Christian R.
    Kuhnke, Klaus
    Kern, Klaus
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 441 - 453
  • [22] LIGHT-MATTER INTERACTION Perfect reflections
    Csontos, Dan
    NATURE PHYSICS, 2008, 4 (12) : 908 - 908
  • [23] Light-matter interaction - Experimental aspects
    Klingshirn, CF
    SPECTROSCOPY AND DYNAMICS OF COLLECTIVE EXCITATIONS IN SOLIDS, 1997, 356 : 85 - 122
  • [24] Mimicking chiral light-matter interaction
    Nechayev, Sergey
    Banzer, Peter
    PHYSICAL REVIEW B, 2019, 99 (24)
  • [25] Light-matter Interaction and Zeta Functions
    Reyes-Bustos, Cid
    Wakayama, Masato
    NTT Technical Review, 2024, 22 (09): : 65 - 72
  • [26] Polaritonic nonlocality in light-matter interaction
    Rajabali, Shima
    Cortese, Erika
    Beck, Mattias
    De Liberato, Simone
    Faist, Jerome
    Scalari, Giacomo
    NATURE PHOTONICS, 2021, 15 (09) : 690 - 695
  • [27] Nonlinear light-matter interaction with femtosecond high-angle Bessel beams
    Faccio, D.
    Rubino, E.
    Lotti, A.
    Couairon, A.
    Dubietis, A.
    Tamosauskas, G.
    Papazoglou, D. G.
    Tzortzakis, S.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [28] Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
    Alfasi, Nir
    Masis, Sergei
    Winik, Roni
    Farfurnik, Demitry
    Shtempluck, Oleg
    Bar-Gill, Nir
    Buks, Eyal
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [29] Confinement of light in microresonators for controlling light-matter interaction
    Bayer, M
    Forchel, A
    Reinecke, TL
    Knipp, PA
    Rudin, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2002, 191 (01): : 3 - 32
  • [30] Light-matter interaction in single layer of atoms
    不详
    PHOTONICS SPECTRA, 2017, 51 (10) : 30 - 30