DataSHIELD: resolving a conflict in contemporary bioscience-performing a pooled analysis of individual-level data without sharing the data

被引:113
|
作者
Wolfson, Michael [2 ]
Wallace, Susan E. [3 ,4 ]
Masca, Nicholas [1 ,5 ]
Rowe, Geoff [2 ]
Sheehan, Nuala A. [1 ,5 ]
Ferretti, Vincent [4 ,6 ]
LaFlamme, Philippe [4 ,7 ]
Tobin, Martin D. [1 ,5 ]
Macleod, John [8 ]
Little, Julian [4 ,9 ]
Fortier, Isabel [4 ,9 ,10 ]
Knoppers, Bartha M. [3 ,4 ]
Burton, Paul R. [1 ,4 ,5 ,9 ,11 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Leicester LE1 7RH, Leics, England
[2] STAT Canada, Ottawa, ON, Canada
[3] McGill Univ, Fac Med, Dept Human Genet, Ctr Genom & Policy, Montreal, PQ, Canada
[4] Publ Populat Project Genom P3G, Montreal, PQ, Canada
[5] Univ Leicester, Dept Genet, Leicester LE1 7RH, Leics, England
[6] MaRS Ctr, Ontario Inst Canc Res, Toronto, ON, Canada
[7] Genome Quebec Innovat Ctr, Montreal, PQ, Canada
[8] Univ Bristol, Dept Social Med, Bristol, Avon, England
[9] Univ Ottawa, Dept Epidemiol & Community Med, Ottawa, ON, Canada
[10] Univ Montreal, Dept Med Sociale & Prevent, Montreal, PQ, Canada
[11] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada
基金
英国惠康基金; 英国医学研究理事会;
关键词
Pooling; analysis; meta-analysis; individual-level; study-level; generalized linear model; GLM; ethico-legal; ELSI; identification; disclosure; distributed computing; bioinformatics; information technology; IT; GENOME-WIDE ASSOCIATION; INCOME INEQUALITY; COMMON VARIANTS; LOCI; SUSCEPTIBILITY; EPIDEMIOLOGY; GENE; PRIVACY;
D O I
10.1093/ije/dyq111
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Methods Data aggregation through anonymous summary-statistics from harmonized individual-level databases (DataSHIELD), provides a simple approach to analysing pooled data that circumvents this conflict. This is achieved via parallelized analysis and modern distributed computing and, in one key setting, takes advantage of the properties of the updating algorithm for generalized linear models (GLMs). Results The conceptual use of DataSHIELD is illustrated in two different settings. Conclusions As the study of the aetiological architecture of chronic diseases advances to encompass more complex causal pathways-e.g. to include the joint effects of genes, lifestyle and environment-sample size requirements will increase further and the analysis of pooled individual-level data will become ever more important. An aim of this conceptual article is to encourage others to address the challenges and opportunities that DataSHIELD presents, and to explore potential extensions, for example to its use when different data sources hold different data on the same individuals.
引用
收藏
页码:1372 / 1382
页数:11
相关论文
共 50 条
  • [1] DATASHIELD: INDIVIDUAL-LEVEL META-ANALYSIS WITHOUT SHARING THE DATA
    Burton, P. R.
    Wolfson, M.
    Masca, N.
    Sheehan, N. A.
    Fortier, I.
    GERONTOLOGIST, 2010, 50 : 249 - 249
  • [2] DATASHIELD: INDIVIDUAL-LEVEL META-ANALYSIS WITHOUT SHARING THE DATA
    Burton, P.
    Wolfson, M.
    Masca, N.
    Fortier, I.
    JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2011, 65 : A37 - A37
  • [3] Individual-level generalised estimating equations analysis without sharing the data
    Jones, Elinor M.
    Sheehan, Nuala A.
    Burton, Paul R.
    ANNALS OF HUMAN GENETICS, 2012, 76 : 416 - 416
  • [4] Confounding Adjustment in a Distributed Data System without Sharing of Individual-Level Data
    Toh, Darren
    Reichman, Marsha E.
    Houstoun, Monika
    Ding, Xiao
    Fireman, Bruce
    Gravel, Eric
    Hernandez, Adrian F.
    Li, Lingling
    Moyneur, Erick
    Shoaibi, Azadeh
    Southworth, Mary Ross
    Zornberg, Gwen
    Hennessy, Sean
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 : 259 - 260
  • [5] DataSHIELD: An Ethically Robust Solution to Multiple-Site Individual-Level Data Analysis
    Budin-Ljosne, Isabelle
    Burton, Paul
    Isaeva, Julia
    Gaye, Amadou
    Turner, Andrew
    Murtagh, Madeleine J.
    Wallace, Susan
    Ferretti, Vincent
    Harris, Jennifer R.
    PUBLIC HEALTH GENOMICS, 2015, 18 (02) : 87 - 96
  • [6] Ownership of individual-level health data, data sharing, and data governance
    Piasecki, Jan
    Cheah, Phaik Yeong
    BMC MEDICAL ETHICS, 2022, 23 (01)
  • [7] Ownership of individual-level health data, data sharing, and data governance
    Jan Piasecki
    Phaik Yeong Cheah
    BMC Medical Ethics, 23
  • [8] Templates for analysis of individual-level prescription data
    Hallas, J
    Stovring, H
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2006, 98 (03) : 260 - 265
  • [9] ASSESSING THE GENERALIZABILITY OF CLINICAL TRIALS WITHOUT INDIVIDUAL-LEVEL TRIAL DATA
    Wang, W. J.
    Bansal, A.
    Bennette, C.
    Basu, A.
    VALUE IN HEALTH, 2019, 22 : S322 - S323
  • [10] Inverse probability weighted Cox model in multi-site studies without sharing individual-level data
    Shu, Di
    Yoshida, Kazuki
    Fireman, Bruce H.
    Toh, Sengwee
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (06) : 1668 - 1681