Coherent states in finite-dimensional Hilbert space and their Wigner representation

被引:0
|
作者
Opatrny, T
Miranowicz, A
Bajer, J
机构
[1] ADAM MICKIEWICZ UNIV POZNAN,INST PHYS,DIV NONLINEAR OPT,PL-60780 POZNAN,POLAND
[2] PALACKY UNIV,OPT QUANT LAB,CR-77207 OLOMOUC,CZECH REPUBLIC
关键词
D O I
10.1080/095003496156282
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider two definitions of coherent states in a finite-dimensional Hilbert space based on (i) truncation of the usual coherent state expansion and (ii) generalization of the displacement operator acting on vacuum. The number-phase Wigner function is computed for such states. Analytical results and numerically computed graphs are presented. Special attention is paid to two-level slates and to their Stokes parameter representations.
引用
收藏
页码:417 / 432
页数:16
相关论文
共 50 条
  • [41] Quantum-optical states in finite-dimensional Hilbert space. I. General formalism
    Miranowicz, A
    Leonski, W
    Imoto, N
    MODERN NONLINEAR OPTICS, PT 1, SECOND ED, 2001, 119 : 155 - 193
  • [42] Comment on "Quantum phase for an arbitrary system with finite-dimensional Hilbert space"
    Hall, Michael J. W.
    Pegg, David T.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [43] Random projectors with continuous resolutions of the identity in a finite-dimensional Hilbert space
    Vourdas, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (45)
  • [44] Quantum Teleportation and Quantum Dense Coding in a Finite-Dimensional Hilbert Space
    M. Ban
    International Journal of Theoretical Physics, 2003, 42 : 1 - 13
  • [45] Finite-Dimensional Bicomplex Hilbert Spaces
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 561 - 581
  • [46] Quantum-optical states in finite-dimensional Hilbert space. II. State generation
    Leonski, W
    Miranowicz, A
    MODERN NONLINEAR OPTICS, PT 1, SECOND ED, 2001, 119 : 195 - 213
  • [47] FINITE-DIMENSIONAL HILBERT C*-MODULES
    Arambasic, Ljiljana
    Bakic, Damir
    Rajic, Rajna
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (02): : 147 - 157
  • [48] Finite-Dimensional Bicomplex Hilbert Spaces
    Raphaël Gervais Lavoie
    Louis Marchildon
    Dominic Rochon
    Advances in Applied Clifford Algebras, 2011, 21 : 561 - 581
  • [49] Discrete Wigner function for finite-dimensional systems
    Luis, A
    Perina, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : 1423 - 1441
  • [50] Discrete Wigner function for finite-dimensional systems
    Luis, A.
    Perina, J.
    Journal of Physics A: Mathematical and General, 31 (05):