Learning temporal context in active object recognition using Bayesian analysis

被引:0
|
作者
Paletta, L [1 ]
Prantl, M [1 ]
Pinz, A [1 ]
机构
[1] Joanneum Res, Inst Digital Image Proc, Graz, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Active object recognition is a successful strategy to reduce uncertainty of single view recognition, by planning sequences of views, actively obtaining these views, and integrating multiple recognition results. Understanding recognition as a sequential decision problem challenges the visual agent to select discriminative information sources. The presented system emphasizes the importance of temporal context in disambiguating initial object hypotheses, provides the corresponding theory for Bayesian fusion processes, and demonstrates its performance being superior to alternative view planning schemes. Instance based learning proposed to estimate the control function enables then real-time processing with improved performance characteristics.
引用
收藏
页码:695 / 699
页数:5
相关论文
共 50 条
  • [41] RALF: A Reinforced Active Learning Formulation for Object Class Recognition
    Ebert, Sandra
    Fritz, Mario
    Schiele, Bernt
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3626 - 3633
  • [42] A Computational Learning Theory of Active Object Recognition Under Uncertainty
    Andreopoulos, Alexander
    Tsotsos, John K.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 101 (01) : 95 - 142
  • [43] Online Active Continual Learning for Robotic Lifelong Object Recognition
    Nie, Xiangli
    Deng, Zhiguang
    He, Mingdong
    Fan, Mingyu
    Tang, Zheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (12) : 1 - 15
  • [44] Unstructured object recognition using morphological learning
    Kar, S
    Chandran, S
    DEFENCE SCIENCE JOURNAL, 2002, 52 (03) : 261 - 275
  • [45] Leveraging temporal context in deep learning methodology for small object detection
    Heslinga, Friso G.
    Ruis, Frank
    Ballan, Luca
    van Leeuwen, Martin C.
    Masini, Beatrice
    van Woerden, Jan Erik
    den Hollander, Richard J. M.
    Berndsen, Martin
    Baan, Jan
    Dijk, Judith
    Huizinga, Wyke
    ARTIFICIAL INTELLIGENCE FOR SECURITY AND DEFENCE APPLICATIONS, 2023, 12742
  • [46] Active object perception using Bayesian classifiers and haptic exploration
    Sun, Teng
    Liu, Hongbin
    Miao, Zhonghua
    AUTONOMOUS ROBOTS, 2023, 47 (01) : 19 - 36
  • [47] Active object perception using Bayesian classifiers and haptic exploration
    Teng Sun
    Hongbin Liu
    Zhonghua Miao
    Autonomous Robots, 2023, 47 : 19 - 36
  • [48] Audiogram estimation using Bayesian active learning
    Schlittenlacher, Josef
    Turner, Richard E.
    Moore, Brian C. J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (01): : 421 - 430
  • [49] Context-Aware Zero-Shot Learning for Object Recognition
    Zablocki, Eloi
    Bordes, Patrick
    Piwowarski, Benjamin
    Soulier, Laure
    Gallinari, Patrick
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [50] The role of context in object recognition
    Oliva, Aude
    Torralba, Antonio
    TRENDS IN COGNITIVE SCIENCES, 2007, 11 (12) : 520 - 527