The genetic basis for panicle trait variation in switchgrass (Panicum virgatum)

被引:2
|
作者
Zhang, Li [1 ]
MacQueen, Alice [1 ]
Weng, Xiaoyu [1 ]
Behrman, Kathrine D. [1 ]
Bonnette, Jason [1 ]
Reilley, John L. [2 ]
Rouquette, Francis M., Jr. [3 ]
Fay, Philip A. [4 ]
Wu, Yanqi [5 ]
Fritschi, Felix B. [6 ]
Mitchell, Robert B. [7 ]
Lowry, David B. [8 ,9 ]
Boe, Arvid R. [10 ]
Juenger, Thomas E. [1 ]
机构
[1] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[2] USDA, Kika de la Garza Plant Mat Ctr, Natl Resources Conservat Serv, Kingsville, TX 78363 USA
[3] Texas A&M Univ, Texas A&M AgriLife Res & Extens Ctr, Overton, TX 75684 USA
[4] ARS, Grassland Soil & Water Res Lab, USDA, Temple, TX 76502 USA
[5] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
[6] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
[7] Univ Nebraska, Wheat Sorghum & Forage Res Unit, ARS, USDA, Lincoln, NE 68583 USA
[8] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[9] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
[10] South Dakota State Univ, Dept Agron Hort & Plant Sci, Brookings, SD 57007 USA
基金
美国国家科学基金会;
关键词
X ENVIRONMENT INTERACTIONS; INFLORESCENCE ARCHITECTURE; PHENOTYPIC PLASTICITY; REPRODUCTIVE TRAITS; FLOWERING TIME; RICE; PLANT; EVOLUTION; GENOTYPE; MAIZE;
D O I
10.1007/s00122-022-04096-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Key message We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL x E), and most (four of six) of the effects with QTL x E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.
引用
下载
收藏
页码:2577 / 2592
页数:16
相关论文
共 50 条
  • [21] Estimation of Genetic Parameters for Biomass Yield in Lowland Switchgrass (Panicum virgatum L.)
    Bhandari, H. S.
    Saha, M. C.
    Fasoula, V. A.
    Bouton, J. H.
    CROP SCIENCE, 2011, 51 (04) : 1525 - 1533
  • [22] Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations
    Nageswara-Rao, Madhugiri
    Stewart, C. Neal, Jr.
    Kwit, Charles
    GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (03) : 1057 - 1068
  • [23] Single Nucleotide Polymorphism Variation in Switchgrass (Panicum Virgatum) for Lignin Biosynthesis-Involved Genes
    Bahri, Bochra Amina
    Daverdin, Guillaume
    Xu, Xiangyang
    Cheng, Jan-Fang
    Barry, Kerrie W.
    Charles, E. Brummer
    Devos, Katrien Martha
    RECENT ADVANCES IN ENVIRONMENTAL SCIENCE FROM THE EURO-MEDITERRANEAN AND SURROUNDING REGIONS, VOLS I AND II, 2018, : 1565 - 1566
  • [24] Characterization of steroidal sapogenins in Panicum virgatum L. (Switchgrass)
    Lee, ST
    Stegelmeier, BL
    Gardner, DR
    Vogel, KP
    POISONOUS PLANTS AND RELATED TOXINS, 2004, : 329 - 334
  • [25] Genetic Structure of Remnant Populations and Cultivars of Switchgrass ( Panicum virgatum) in the Context of Prairie Conservation and Restoration
    Mutegi, Evans
    Stottlemyer, Amy L.
    Snow, Allison A.
    Sweeney, Patricia M.
    RESTORATION ECOLOGY, 2014, 22 (02) : 223 - 231
  • [26] Chlorophyll values as a measure of genetic variation of switchgrass (Panicum virgatum L.) populations under cool temperate climate conditions
    Liatukas, Zilvinas
    Lemeziene, Nijole
    Butkute, Bronislava
    Ceseviciene, Jurgita
    Dabkeviciene, Giedre
    ZEMDIRBYSTE-AGRICULTURE, 2015, 102 (02) : 159 - 166
  • [27] Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum)
    Rao, Xiaolan
    Chen, Xin
    Shen, Hui
    Ma, Qin
    Li, Guifen
    Tang, Yuhong
    Pena, Maria
    York, William
    Frazier, Taylor P.
    Lenaghan, Scott
    Xiao, Xirong
    Chen, Fang
    Dixon, Richard A.
    PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (03) : 580 - 593
  • [28] Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity
    Boateng, A.A.
    Hicks, K.B.
    Vogel, K.P.
    Journal of Analytical and Applied Pyrolysis, 2006, 75 (02): : 55 - 64
  • [29] Pollen Viability and Longevity of Switchgrass (Panicum virgatum L.)
    Ge, Yaxin
    Fu, Chunxiang
    Bhandari, Hem
    Bouton, Joseph
    Brummer, E. Charles
    Wang, Zeng-Yu
    CROP SCIENCE, 2011, 51 (06) : 2698 - 2705
  • [30] Modelling of thermochemical energy recovery processes for switchgrass (Panicum virgatum)
    Ighalo, Joshua O.
    Adeniyi, Adewale George
    INDIAN CHEMICAL ENGINEER, 2021, 63 (03) : 240 - 251