Vector semirational rogue waves for a coupled nonlinear Schrodinger system in a birefringent fiber

被引:18
|
作者
Yuan, Yu-Qiang [1 ,2 ]
Tian, Bo [1 ,2 ]
Chai, Han-Peng [1 ,2 ]
Wu, Xiao-Yu [1 ,2 ]
Du, Zhong [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Birefringent fiber; Coupled nonlinear Schrodinger system; Semirational solutions; Vector rogue waves; Vector breathers; DARK SOLITONS; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATION; OPTICAL-FIBER; EQUATIONS; BREATHERS; BRIGHT;
D O I
10.1016/j.aml.2018.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation in this paper is a coupled nonlinear Schrodinger system with the four-wave mixing term, which describes the propagation of optical waves in a birefringent fiber. Via the Darboux dressing transformation, the semirational solutions which give rise to the vector rogue waves and breathers are obtained. We display the vector rogue waves and the interaction between the rogue waves and bright dark solitons. During the interaction, breather-like structures arise because of the interference between the dark and bright components of the soliton. Besides, it can be observed that the rogue wave and soliton merge together. Interactions between the breathers and bright dark solitons are shown graphically. Keeping vertical bar alpha(1)vertical bar(2)a +vertical bar alpha(2)vertical bar(2)c + b alpha(1)alpha(2)* + b*alpha(1)*alpha(2)* invariant, we find that the smaller value of ac -vertical bar b vertical bar(2) yields the more obvious breather-like structure, with a and c representing the self- and cross-phase modulations, respectively, b representing the four-wave mixing effect, al and cez being two constants. Similarly, keeping ac ac -vertical bar b vertical bar(2) invariant, we find that the smaller value of vertical bar alpha(1)vertical bar(2)a +vertical bar alpha(2)vertical bar(2)c + b alpha(1)alpha(2)* + b*alpha(1)*alpha(2)* yields the more obvious breather-like structure. Bound state forming between the Kuznetsov-Ma soliton and breather-like structure is illustrated. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 50 条
  • [21] Triple Wronskian vector solitons and rogue waves for the coupled nonlinear Schrodinger equations in the inhomogeneous plasma
    Sun, Wen-Rong
    Tian, Bo
    Liu, Rong-Xiang
    Liu, De-Yin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (02) : 1006 - 1020
  • [22] Vector rogue waves for the N-coupled generalized nonlinear Schrodinger equations with cubic-quintic nonlinearity in an optical fiber
    Wang, Yu-Feng
    Tian, Bo
    Sun, Wen-Rong
    Liu, Rong-Xiang
    OPTIK, 2016, 127 (14): : 5750 - 5756
  • [23] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [24] Characteristics of higher-order vector rogue waves to a coupled fourth-order nonlinear Schrodinger system in a two-mode optical fiber
    Du, Zhong
    Tian, Bo
    Qu, Qi-Xing
    Zhao, Xue-Hui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [25] Generalized Darboux transformation and rogue waves for a coupled variable-coefficient nonlinear Schrodinger system in an inhomogeneous optical fiber
    Yang, Dan-Yu
    Tian, Bo
    Shen, Yuan
    CHINESE JOURNAL OF PHYSICS, 2023, 82 : 182 - 193
  • [26] Lax pair and vector solitons for a variable-coefficient coherently-coupled nonlinear Schrodinger system in the nonlinear birefringent optical fiber
    Chai, Jun
    Tian, Bo
    Chai, Han-Peng
    Yuan, Yu-Qiang
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2017, 31 (14) : 1363 - 1375
  • [27] DYNAMICS OF ROGUE WAVES ON A MULTISOLITON BACKGROUND IN A VECTOR NONLINEAR SCHRODINGER EQUATION
    Mu, Gui
    Qin, Zhenyun
    Grimshaw, Roger
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (01) : 1 - 20
  • [28] Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves
    Baronio, Fabio
    Degasperis, Antonio
    Conforti, Matteo
    Wabnitz, Stefan
    PHYSICAL REVIEW LETTERS, 2012, 109 (04)
  • [29] Characteristics of rogue waves on a soliton background in a coupled nonlinear Schrodinger equation
    Wang, Xiu-Bin
    Han, Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) : 2586 - 2596
  • [30] Breathers and rogue waves: Demonstration with coupled nonlinear Schrodinger family of equations
    Priya, N. Vishnu
    Senthilvelan, M.
    Lakshmanan, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (03): : 339 - 352