Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

被引:0
|
作者
Wilson, Andrew Gordon [1 ]
Nickisch, Hannes [2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Philips Res Hamburg, Hamburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new structured kernel interpolation (SKI) framework, which generalises and unifies inducing point methods for scalable Gaussian processes (GPs). SKI methods produce kernel approximations for fast computations through kernel interpolation. The SKI framework clarifies how the quality of an inducing point approach depends on the number of inducing (aka interpolation) points, interpolation strategy, and GP covariance kernel. SKI also provides a mechanism to create new scalable kernel methods, through choosing different kernel interpolation strategies. Using SKI, with local cubic kernel interpolation, we introduce KISS-GP, which is 1) more scalable than inducing point alternatives, 2) naturally enables Kronecker and Toeplitz algebra for substantial additional gains in scalability, without requiring any grid data, and 3) can be used for fast and expressive kernel learning. KISS-GP costs O(n) time and storage for GP inference. We evaluate KISS-GP for kernel matrix approximation, kernel learning, and natural sound modelling.
引用
收藏
页码:1775 / 1784
页数:10
相关论文
共 50 条
  • [31] SCALABLE HIERARCHICAL MIXTURE OF GAUSSIAN PROCESSES FOR PATTERN CLASSIFICATION
    Nguyen, T. N. A.
    Bouzerdoum, A.
    Phung, S. L.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2466 - 2470
  • [32] Scalable and efficient learning from crowds with Gaussian processes
    Morales-Alvarez, Pablo
    Ruiz, Pablo
    Santos-Rodriguez, Raul
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. INFORMATION FUSION, 2019, 52 : 110 - 127
  • [33] Modulating scalable Gaussian processes for expressive statistical learning
    Liu, Haitao
    Ong, Yew-Soon
    Jiang, Xiaomo
    Wang, Xiaofang
    [J]. PATTERN RECOGNITION, 2021, 120
  • [34] Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces
    Herlands, William
    Wilson, Andrew
    Nickisch, Hannes
    Flaxman, Seth
    Neill, Daniel
    van Panhuis, Wilbert
    Xing, Eric
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1013 - 1021
  • [35] Band-Limited Gaussian Processes: The Sinc Kernel
    Tobar, Felipe
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] Asymmetric kernel in Gaussian Processes for learning target variance
    Pintea, S. L.
    van Gemert, J. C.
    Smeulders, A. W. M.
    [J]. PATTERN RECOGNITION LETTERS, 2018, 108 : 70 - 77
  • [37] Tensor-Train Kernel Learning for Gaussian Processes
    Kirstein, Max
    Sommer, David
    Eigel, Martin
    [J]. CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [38] Gaussian Processes on Graphs Via Spectral Kernel Learning
    Zhi, Yin-Cong
    Ng, Yin Cheng
    Dong, Xiaowen
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 304 - 314
  • [39] Automated Kernel Search for Gaussian Processes on Data Streams
    Huewel, Jan David
    Berns, Fabian
    Beecks, Christian
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3584 - 3588
  • [40] Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications
    Bratieres, Sebastien
    Quadrianto, Novi
    Nowozin, Sebastian
    Ghahramani, Zoubin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 334 - 342