A comprehensive review of federated learning for COVID-19 detection

被引:18
|
作者
Naz, Sadaf [1 ]
Phan, Khoa T. [1 ]
Chen, Yi-Ping Phoebe [1 ]
机构
[1] La Trobe Univ, Dept Comp Sci & Informat Technol, Sch Engn & Math Sci, Bundoora, Vic 3086, Australia
关键词
COVID-19; detection; deep learning; federated learning; machine learning; privacy preservation; BLOCKCHAIN; MODELS;
D O I
10.1002/int.22777
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The coronavirus of 2019 (COVID-19) was declared a global pandemic by World Health Organization in March 2020. Effective testing is crucial to slow the spread of the pandemic. Artificial intelligence and machine learning techniques can help COVID-19 detection using various clinical symptom data. While deep learning (DL) approach requiring centralized data is susceptible to a high risk of data privacy breaches, federated learning (FL) approach resting on decentralized data can preserve data privacy, a critical factor in the health domain. This paper reviews recent advances in applying DL and FL techniques for COVID-19 detection with a focus on the latter. A model FL implementation use case in health systems with a COVID-19 detection using chest X-ray image data sets is studied. We have also reviewed applications of previously published FL experiments for COVID-19 research to demonstrate the applicability of FL in tackling health research issues. Last, several challenges in FL implementation in the healthcare domain are discussed in terms of potential future work.
引用
收藏
页码:2371 / 2392
页数:22
相关论文
共 50 条
  • [31] Federated Learning toward Data Preprocessing: COVID-19 Context
    Chaari Fourati, Lamia
    Ayed, Samiha
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [32] Federated learning for predicting clinical outcomes in patients with COVID-19
    Dayan, Ittai
    Roth, Holger R.
    Zhong, Aoxiao
    Harouni, Ahmed
    Gentili, Amilcare
    Abidin, Anas Z.
    Liu, Andrew
    Costa, Anthony Beardsworth
    Wood, Bradford J.
    Tsai, Chien-Sung
    Wang, Chih-Hung
    Hsu, Chun-Nan
    Lee, C. K.
    Ruan, Peiying
    Xu, Daguang
    Wu, Dufan
    Huang, Eddie
    Kitamura, Felipe Campos
    Lacey, Griffin
    de Antonio Corradi, Gustavo Cesar
    Nino, Gustavo
    Shin, Hao-Hsin
    Obinata, Hirofumi
    Ren, Hui
    Crane, Jason C.
    Tetreault, Jesse
    Guan, Jiahui
    Garrett, John W.
    Kaggie, Joshua D.
    Park, Jung Gil
    Dreyer, Keith
    Juluru, Krishna
    Kersten, Kristopher
    Rockenbach, Marcio Aloisio Bezerra Cavalcanti
    Linguraru, Marius George
    Haider, Masoom A.
    AbdelMaseeh, Meena
    Rieke, Nicola
    Damasceno, Pablo F.
    Silva, Pedro Mario Cruz E.
    Wang, Pochuan
    Xu, Sheng
    Kawano, Shuichi
    Sriswasdi, Sira
    Park, Soo Young
    Grist, Thomas M.
    Buch, Varun
    Jantarabenjakul, Watsamon
    Wang, Weichung
    Tak, Won Young
    NATURE MEDICINE, 2021, 27 (10) : 1735 - +
  • [33] Federated Learning for COVID-19 on Heterogeneous CXR Images with Noise
    Ding, Mengqing
    Li, Juan
    Yi, Changyan
    Cai, Jun
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3413 - 3418
  • [34] Federated learning for predicting clinical outcomes in patients with COVID-19
    Ittai Dayan
    Holger R. Roth
    Aoxiao Zhong
    Ahmed Harouni
    Amilcare Gentili
    Anas Z. Abidin
    Andrew Liu
    Anthony Beardsworth Costa
    Bradford J. Wood
    Chien-Sung Tsai
    Chih-Hung Wang
    Chun-Nan Hsu
    C. K. Lee
    Peiying Ruan
    Daguang Xu
    Dufan Wu
    Eddie Huang
    Felipe Campos Kitamura
    Griffin Lacey
    Gustavo César de Antônio Corradi
    Gustavo Nino
    Hao-Hsin Shin
    Hirofumi Obinata
    Hui Ren
    Jason C. Crane
    Jesse Tetreault
    Jiahui Guan
    John W. Garrett
    Joshua D. Kaggie
    Jung Gil Park
    Keith Dreyer
    Krishna Juluru
    Kristopher Kersten
    Marcio Aloisio Bezerra Cavalcanti Rockenbach
    Marius George Linguraru
    Masoom A. Haider
    Meena AbdelMaseeh
    Nicola Rieke
    Pablo F. Damasceno
    Pedro Mario Cruz e Silva
    Pochuan Wang
    Sheng Xu
    Shuichi Kawano
    Sira Sriswasdi
    Soo Young Park
    Thomas M. Grist
    Varun Buch
    Watsamon Jantarabenjakul
    Weichung Wang
    Won Young Tak
    Nature Medicine, 2021, 27 : 1735 - 1743
  • [35] A COVID-19 Auxiliary Diagnosis Based on Federated Learning and Blockchain
    Wang Z.
    Cai L.
    Zhang X.
    Choi C.
    Su X.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [36] CoviFL: Edge-Assisted Federated Learning for Remote COVID-19 Detection in an AIoMT Framework
    Bhattacharya, Aneesh
    Rana, Risav
    Udutalapally, Venkanna
    Das, Debanjan
    2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
  • [37] A comprehensive review of therapeutic options for COVID-19
    Darvishi, Mohammad
    Sepahvand, Shahriar
    Shahali, Hamze
    Nazer, Mohammad Reza
    Madani, Mahboobeh
    Sepahvand, Hassan
    Karbasizade, Vajihe
    ETHIOPIAN JOURNAL OF HEALTH DEVELOPMENT, 2022, 36 (04) : 1 - 11
  • [38] Integrated CNN and Federated Learning for COVID-19 Detection on Chest X-Ray Images
    Li, Zheng
    Xu, Xiaolong
    Cao, Xuefei
    Liu, Wentao
    Zhang, Yiwen
    Chen, Dehua
    Dai, Haipeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 835 - 845
  • [39] COVID-19 diagnosis and management: a comprehensive review
    Pascarella, Giuseppe
    Strumia, Alessandro
    Piliego, Chiara
    Bruno, Federica
    Del Buono, Romualdo
    Costa, Fabio
    Scarlata, Simone
    Agro, Felice Eugenio
    JOURNAL OF INTERNAL MEDICINE, 2020, 288 (02) : 192 - 206
  • [40] Covid-19 and the cardiovascular system: a comprehensive review
    Rafael Bellotti Azevedo
    Bruna Gopp Botelho
    João Victor Gonçalves de Hollanda
    Leonardo Villa Leão Ferreira
    Letícia Zarur Junqueira de Andrade
    Stephanie Si Min Lilienwald Oei
    Tomás de Souza Mello
    Elizabeth Silaid Muxfeldt
    Journal of Human Hypertension, 2021, 35 : 4 - 11