The Power of Subsampling in Submodular Maximization

被引:3
|
作者
Harshaw, Christopher [1 ]
Kazemi, Ehsan [2 ]
Feldman, Moran [3 ]
Karbasi, Amin [1 ,4 ,5 ]
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[2] Google, CH-8002 Zurich, Switzerland
[3] Univ Haifa, Dept Comp Sci, IL-3498838 Haifa, Israel
[4] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[5] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
submodular maximization; subsampling; streaming algorithms; approximation algorithms; p-extendible systems; p-matchoids; APPROXIMATIONS; ALGORITHM; GREEDY;
D O I
10.1287/moor.2021.1172
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present SAMPLEGREEDY, which obtains a (p + 2 + o(1))-approximation for maximizing a submodular function subject to a p-extendible system using O(n + nk/p) evaluation and feasibility queries, where k is the size of the largest feasible set. The approximation ratio improves to p + 1 and p for monotone submodular and linear objectives, respectively. In the streaming setting, we present Sample-Streaming, which obtains a (4p + 2 - o(1))-approximation for maximizing a submodular function subject to a p-matchoid using O(k) memory and O(km/p) evaluation and feasibility queries per element, and m is the number of matroids defining the p-matchoid. The approximation ratio improves to 4p for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.
引用
收藏
页码:1365 / 1393
页数:29
相关论文
共 50 条
  • [21] Distributionally Robust Submodular Maximization
    Staib, Matthew
    Wilder, Bryan
    Jegelka, Stefanie
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 506 - 516
  • [22] Maximization of Approximately Submodular Functions
    Horel, Thibaut
    Singer, Yaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [23] Practical Budgeted Submodular Maximization
    Feldman, Moran
    Nutov, Zeev
    Shoham, Elad
    ALGORITHMICA, 2023, 85 (05) : 1332 - 1371
  • [24] Regularized nonmonotone submodular maximization
    Lu, Cheng
    Yang, Wenguo
    Gao, Suixiang
    OPTIMIZATION, 2024, 73 (06) : 1739 - 1765
  • [25] ORACLE COMPLEXITY OF SUBMODULAR FUNCTION MAXIMIZATION
    KOVALEV, MM
    MOSHCHENSKY, AV
    DOKLADY AKADEMII NAUK BELARUSI, 1992, 36 (02): : 111 - 114
  • [26] Robust monotone submodular function maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 505 - 537
  • [27] Robust Maximization of Correlated Submodular Functions
    Hou, Qiqiang
    Clark, Andrew
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7177 - 7183
  • [28] Resilient Monotone Submodular Function Maximization
    Tzoumas, Vasileios
    Gatsis, Konstantinos
    Jadbabaie, Ali
    Pappas, George J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [29] Sequence submodular maximization meets streaming
    Yang, Ruiqi
    Xu, Dachuan
    Guo, Longkun
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 43 - 55
  • [30] On Distributed Submodular Maximization with Limited Information
    Gharesifard, Bahman
    Smith, Stephen L.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1048 - 1053