Accounting for Uncertainties of Magnitude- and Site-Related Parameters on Neural Network- Computed Ground-Motion Prediction Equations

被引:9
|
作者
Wang, Zhiyi [1 ,2 ]
Zentner, Irmela [1 ]
Zio, Enrico [2 ,3 ]
机构
[1] EDF Lab Paris Saclay, Palaiseau, France
[2] Univ Paris Saclay, Cent Supelec, Chair Syst Sci & Energet Challenge, Essonne, France
[3] Politecn Milan, Energy Dept, Milan, Italy
关键词
MODELS; RESORCE; EUROPE; EARTHQUAKES; ALGORITHM; PGA;
D O I
10.1785/0120180309
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ground-motion prediction equations (GMPEs) are used to express seismic intensity measures as a function of source-, path-, and site-related parameters. Functional models are still widely used for their computation. Fully data-driven approaches have been recently proposed based on artificial neural networks (ANNs). However, the estimation errors of the predictor parameters (e.g., the magnitude and V-s30) are generally not accounted for in the development of GMPEs. In the present study, the uncertainty in the magnitude- and site-related parameters is considered in the establishment of GMPEs by ANNs. For this, an algorithm is proposed based on the generalized least-squares principle applied to ANNs training. A simulated database is used to validate the approach and to demonstrate the effect of the input parameter uncertainties on the GMPEs. Finally, the proposed model is applied to the Reference database for seismic ground motion in Europe (RESORCE) database. Results show that the consideration of uncertainty in the magnitude- and site-related parameters can reduce the total GMPE uncertainties by 4%-16%, whereas the median predictions remain similar.
引用
收藏
页码:629 / 646
页数:18
相关论文
共 46 条
  • [21] Nonlinear Site Models Derived from 1D Analyses for Ground-Motion Prediction Equations Using Site Class as the Site Parameter
    Zhao, John X.
    Hu, Junsheng
    Jiang, Fei
    Zhou, Jun
    Zhang, Yingbin
    An, Xiaowen
    Lu, Ming
    Rhoades, David. A.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2015, 105 (04) : 2010 - 2022
  • [22] Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    Alavi, Amir Hossein
    Gandomi, Amir Hossein
    COMPUTERS & STRUCTURES, 2011, 89 (23-24) : 2176 - 2194
  • [23] Ground-Motion Prediction Equations for Subduction Slab Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions
    Zhao, John X.
    Jiang, Fei
    Shi, Pan
    Xing, Hao
    Huang, Haifeng
    Hou, Ruibin
    Zhang, Yingbin
    Yu, Pengcheng
    Lan, Xiaowen
    Rhoades, David A.
    Somerville, Paul G.
    Irikura, Kojiro
    Fukushima, Yoshimitsu
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2016, 106 (04) : 1535 - 1551
  • [25] Ground-Motion Prediction Equations for Subduction Interface Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions
    Zhao, John X.
    Liang, Xuan
    Jiang, Fei
    Xing, Hao
    Zhu, Min
    Hou, Ruibin
    Zhang, Yingbin
    Lan, Xiaowen
    Rhoades, David A.
    Irikura, Kojiro
    Fukushima, Yoshimitsu
    Somerville, Paul G.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2016, 106 (04) : 1518 - 1534
  • [26] A Nonlinear Site Amplification Model for the Horizontal Component Developed for Ground-Motion Prediction Equations in Japan Using Site Period as the Site-Response Parameter
    Hou, Ruibin
    Zhao, John X.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2022, 112 (01) : 381 - 399
  • [27] Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters
    Pezeshk, Shahram
    Zandieh, Arash
    Tavakoli, Behrooz
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2011, 101 (04) : 1859 - 1870
  • [28] Regional ground-motion prediction equations for amplitude-, frequency response-, and duration-based parameters for Greece
    Chousianitis, Konstantinos
    Del Gaudio, Vincenzo
    Pierri, Pierpaolo
    Tselentis, G. -Akis
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2018, 47 (11): : 2252 - 2274
  • [29] A Nonlinear Site Amplification Model for the Horizontal Component Developed for Ground-Motion Prediction Equations in Japan Using Site Period as the Site-Response Parameter
    Hou, Ruibin
    Zhao, John X.
    Bulletin of the Seismological Society of America, 2022, 112 (01): : 381 - 399
  • [30] Empirical ground-motion prediction equations for northern Italy using weak-and strong-motion amplitudes, frequency content, and duration parameters
    Massa, M.
    Morasca, P.
    Moratto, L.
    Marzorati, S.
    Costa, G.
    Spallarossa, D.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2008, 98 (03) : 1319 - 1342