Worm domains and Fefferman space-time singularities

被引:6
|
作者
Barletta, Elisabetta [1 ]
Dragomir, Sorin [1 ]
Peloso, Marco M. [2 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, Italy
关键词
Worm domain; Levi form; Fefferman's metric; Curvature singularity; Schmidt metric; Bundle boundary; PSEUDOCONVEX DOMAINS; INVARIANTS; REGULARITY; EXISTENCE; BOUNDARY; GEOMETRY;
D O I
10.1016/j.geomphys.2017.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W be a smoothly bounded worm domain in C-2 and let A = Null(L-theta) be the set of Levi-flat points on the boundary partial derivative W of W. We study the relationship between pseudohermitian geometry of the strictly pseudoconvex locus M = partial derivative W \ A and the theory of space-time singularities associated to the Fefferman metric F-theta on the total space of the canonical circle bundle S-1 -> C(M) -> (pi) M. Given any point (0, w(o)) is an element of A, we show that every lift Gamma(phi) is an element of C(M), 0 <= phi - log |w(o)|(2) < pi/2, of the circle Gamma(w0) : r = 2 cos[log |w(o)|(2) - phi] in M, runs into a curvature singularity of Fefferman's space-time (C(M), F-theta). We show that Sigma = pi(-1) (Gamma(w0)) is a Lorentzian real surface in (C(M), F-theta) such that the immersion l : Sigma curved right arrow C(M) has a flat normal connection. Consequently, there is a natural isometric immersion j : O(Sigma) -> O(C(M), Sigma) between the total spaces of the principal bundles of Lorentzian frames O(1, 1) -> O(Sigma) -> Sigma and adapted Lorentzian frames O(1, 1) x O(2) -> O(C(M), Sigma) -> Sigma, endowed with Schmidt metrics, descending to a map of bundle completions which maps the b-boundary of Sigma into the adapted bundle boundary of C(M), i.e. j(Sigma) over dot subset of partial derivative(adt) C(M). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 168
页数:27
相关论文
共 50 条
  • [41] RESOLUTION OF SIMPLE SINGULARITIES YIELDING PARTICLE SYMMETRIES IN A SPACE-TIME
    RAINER, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) : 646 - 655
  • [42] MINIMAL-SURFACES, SPATIAL TOPOLOGY AND SINGULARITIES IN SPACE-TIME
    GALLOWAY, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (07): : 1435 - 1439
  • [43] Null geodesics and wave front singularities in the Godel space-time
    Kling, Thomas P.
    Roebuck, Kevin
    Grotzke, Eric
    GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (01)
  • [44] Space-Time Foam Dense Singularities and de Rham Cohomology
    Anastasios Mallios
    Elemer E. Rosinger
    Acta Applicandae Mathematica, 2001, 67 : 59 - 89
  • [45] RECIPROCAL SPACE-TIME AND MOMENTUM-SPACE SINGULARITIES IN NARROW RESONANCE APPROXIMATION
    GREEN, MB
    NUCLEAR PHYSICS B, 1976, 116 (02) : 449 - 469
  • [46] Inversionof linear space-time transformations in bounded domains
    Stoyan V.A.
    Cybernetics and Systems Analysis, 2001, 37 (5) : 749 - 755
  • [47] Electromagnetic degree of coherence in space-time and space-frequency domains
    Setälä, T
    Tervo, J
    Friberg, AT
    PHOTON MANAGEMENT, 2004, 5456 : 466 - 471
  • [48] Advantages of Space-Time Finite Elements for Domains with Time Varying Topology
    Hosters, Norbert
    von Danwitz, Maximilian
    Antony, Patrick
    Behr, Marek
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION WORKSHOPS (HPC ASIA 2021 WORKSHOPS), 2020, : 5 - 6
  • [49] SPACE-TIME SINGULARITIES IN STRING AND ITS LOW DIMENSIONAL EFFECTIVE THEORY
    Sharma, Preet
    Tziolas, Andreas
    Wang, Anzhong
    Wu, Zhong Chao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (02): : 273 - 300
  • [50] Scalar field probes of power-law space-time singularities
    Blau, Matthias
    Frank, Denis
    Weiss, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):