Worm domains and Fefferman space-time singularities

被引:6
|
作者
Barletta, Elisabetta [1 ]
Dragomir, Sorin [1 ]
Peloso, Marco M. [2 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, Italy
关键词
Worm domain; Levi form; Fefferman's metric; Curvature singularity; Schmidt metric; Bundle boundary; PSEUDOCONVEX DOMAINS; INVARIANTS; REGULARITY; EXISTENCE; BOUNDARY; GEOMETRY;
D O I
10.1016/j.geomphys.2017.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W be a smoothly bounded worm domain in C-2 and let A = Null(L-theta) be the set of Levi-flat points on the boundary partial derivative W of W. We study the relationship between pseudohermitian geometry of the strictly pseudoconvex locus M = partial derivative W \ A and the theory of space-time singularities associated to the Fefferman metric F-theta on the total space of the canonical circle bundle S-1 -> C(M) -> (pi) M. Given any point (0, w(o)) is an element of A, we show that every lift Gamma(phi) is an element of C(M), 0 <= phi - log |w(o)|(2) < pi/2, of the circle Gamma(w0) : r = 2 cos[log |w(o)|(2) - phi] in M, runs into a curvature singularity of Fefferman's space-time (C(M), F-theta). We show that Sigma = pi(-1) (Gamma(w0)) is a Lorentzian real surface in (C(M), F-theta) such that the immersion l : Sigma curved right arrow C(M) has a flat normal connection. Consequently, there is a natural isometric immersion j : O(Sigma) -> O(C(M), Sigma) between the total spaces of the principal bundles of Lorentzian frames O(1, 1) -> O(Sigma) -> Sigma and adapted Lorentzian frames O(1, 1) x O(2) -> O(C(M), Sigma) -> Sigma, endowed with Schmidt metrics, descending to a map of bundle completions which maps the b-boundary of Sigma into the adapted bundle boundary of C(M), i.e. j(Sigma) over dot subset of partial derivative(adt) C(M). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 168
页数:27
相关论文
共 50 条
  • [1] SPACE-TIME SINGULARITIES
    CLARKE, CJS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) : 17 - 23
  • [2] On the resolution of space-time singularities
    Madore, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (22-23): : 2419 - 2425
  • [3] ON THE STRENGTH OF SPACE-TIME SINGULARITIES
    KANNAR, J
    RACZ, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2842 - 2848
  • [4] Worm holes and avian space-time
    Kathryn Jeffery
    John O'Keefe
    Nature, 1998, 395 : 215 - 216
  • [5] Worm holes and avian space-time
    Jeffery, K
    O'Keefe, J
    NATURE, 1998, 395 (6699) : 215 - 216
  • [6] On the resolution of space-time singularities II
    Maceda M.
    Madore J.
    Journal of Nonlinear Mathematical Physics, 2004, 11 (Suppl 1) : 21 - 36
  • [7] Space-time singularities in Weyl manifolds
    I. P. Lobo
    A. B. Barreto
    C. Romero
    The European Physical Journal C, 2015, 75
  • [8] GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES
    PENROSE, R
    PHYSICAL REVIEW LETTERS, 1965, 14 (03) : 57 - +
  • [9] Space-time singularities in Weyl manifolds
    Lobo, I. P.
    Barreto, A. B.
    Romero, C.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (09):
  • [10] On the resolution of space-time singularities II
    Maceda, M
    Madore, J
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 21 - 36