Modeling the Spatial Distribution and Origin of CO Gas in Debris Disks

被引:10
|
作者
Hales, A. S. [1 ,2 ]
Gorti, Uma [3 ,4 ]
Carpenter, John M. [1 ,2 ]
Hughes, Meredith [5 ]
Flaherty, Kevin [5 ,6 ,7 ]
机构
[1] Joint ALMA Observ, Ave Alonso de Cordova 3107, Santiago 7630355, Chile
[2] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA
[3] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA
[4] SETI Inst, Mountain View, CA 94043 USA
[5] Wesleyan Univ, Van Vleck Observ, 96 Foss Hill Dr, Middletown, CT 06459 USA
[6] Williams Coll, Dept Astron, Williamstown, MA 01267 USA
[7] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
来源
ASTROPHYSICAL JOURNAL | 2019年 / 878卷 / 02期
基金
美国国家航空航天局;
关键词
open clusters and associations: individual (Scorpius Centaurus); planetary systems; A-TYPE STARS; CIRCUMSTELLAR DISKS; EXOCOMETARY GAS; LINE EMISSION; BETA-PICTORIS; DISCS; EVOLUTION; DESTRUCTION; EXCITATION; CHEMISTRY;
D O I
10.3847/1538-4357/ab211e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1 ''-1.'' 5 resolution of three debris disks where the (CO)-C-12(2-1) rotational line was detected: HD.131835, HD.138813, and HD.156623. We apply the iterative Lucy-Richardson deconvolution technique to the problem of circumstellar disks to derive disk geometries and surface brightness distributions of the gas. The derived disk parameters are used as input for thermochemical models to test both primordial and cometary scenarios for the origin of the gas. We favor a secondary origin for the gas in these disks and find that the CO gas masses (similar to 3 x 10(-3) M-circle plus) require production rates (similar to 5 x 10(-7) M-circle plus yr(-1)) similar to those estimated for the bona fide gas-rich debris disk beta Pic.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] SPATIAL-DISTRIBUTION OF OVERWRITE INTERFERENCE ON FILM DISKS
    PALMER, D
    PESKE, JV
    IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) : 2451 - 2453
  • [42] The Prediction of Temporal-Spatial Distribution of Space Debris
    Li, XiaoRui
    PROCEEDINGS OF THE 2016 3RD INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING, MANUFACTURING TECHNOLOGY AND CONTROL, 2016, 67 : 934 - 936
  • [43] Spatial distribution of marine debris on the seafloor of Moroccan waters
    Loulad, S.
    Houssa, R.
    Rhinane, H.
    Boumaaz, A.
    Benazzouz, A.
    MARINE POLLUTION BULLETIN, 2017, 124 (01) : 303 - 313
  • [44] Modeling Population Spatial-Temporal Distribution Using Taxis Origin and Destination Data
    Rahimi, Fatema
    Sadeghi-Niaraki, Abolghasem
    Ghodousi, Mostafa
    Choi, Soo-Mi
    SUSTAINABILITY, 2021, 13 (07)
  • [45] The supraglacial debris system at the Pasterze Glacier, Austria: Spatial distribution, characteristics and transport of debris
    Kellerer-Pirklbauer, Andreas
    ZEITSCHRIFT FUR GEOMORPHOLOGIE, 2008, 52 : 3 - 25
  • [46] ON THE SPATIAL DISTRIBUTION AND THE ORIGIN OF HYPERVELOCITY STARS
    Lu, Youjun
    Zhang, Fupeng
    Yu, Qingjuan
    ASTROPHYSICAL JOURNAL, 2010, 709 (02): : 1356 - 1361
  • [47] The origin of spatial intermittency in the galaxy distribution
    Coles, P
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 330 (02) : 421 - 424
  • [48] Modeling the infrared bow shock at δ Velorum:: Implications for studies of debris disks and λ Bootis stars
    Gaspar, A.
    Su, K. Y. L.
    Rieke, G. H.
    Balog, Z.
    Kamp, I.
    Martinez-Galarza, J. R.
    Stapelfeldt, K.
    ASTROPHYSICAL JOURNAL, 2008, 672 (02): : 974 - 983
  • [49] Young brown dwarfs: IMF, disks, spatial distribution, and binarity
    Luhman, KL
    Fazio, G
    Megeath, T
    Hartmann, L
    Calvet, N
    Low-Mass Stars and Brown Dwarfs - IMF Accretion and Activity, 2005, 76 (02): : 285 - 290
  • [50] Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis
    Wiersberg, Thomas
    Erzinger, Joerg
    APPLIED GEOCHEMISTRY, 2008, 23 (06) : 1675 - 1690