Modeling the Spatial Distribution and Origin of CO Gas in Debris Disks

被引:10
|
作者
Hales, A. S. [1 ,2 ]
Gorti, Uma [3 ,4 ]
Carpenter, John M. [1 ,2 ]
Hughes, Meredith [5 ]
Flaherty, Kevin [5 ,6 ,7 ]
机构
[1] Joint ALMA Observ, Ave Alonso de Cordova 3107, Santiago 7630355, Chile
[2] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA
[3] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA
[4] SETI Inst, Mountain View, CA 94043 USA
[5] Wesleyan Univ, Van Vleck Observ, 96 Foss Hill Dr, Middletown, CT 06459 USA
[6] Williams Coll, Dept Astron, Williamstown, MA 01267 USA
[7] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
来源
ASTROPHYSICAL JOURNAL | 2019年 / 878卷 / 02期
基金
美国国家航空航天局;
关键词
open clusters and associations: individual (Scorpius Centaurus); planetary systems; A-TYPE STARS; CIRCUMSTELLAR DISKS; EXOCOMETARY GAS; LINE EMISSION; BETA-PICTORIS; DISCS; EVOLUTION; DESTRUCTION; EXCITATION; CHEMISTRY;
D O I
10.3847/1538-4357/ab211e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1 ''-1.'' 5 resolution of three debris disks where the (CO)-C-12(2-1) rotational line was detected: HD.131835, HD.138813, and HD.156623. We apply the iterative Lucy-Richardson deconvolution technique to the problem of circumstellar disks to derive disk geometries and surface brightness distributions of the gas. The derived disk parameters are used as input for thermochemical models to test both primordial and cometary scenarios for the origin of the gas. We favor a secondary origin for the gas in these disks and find that the CO gas masses (similar to 3 x 10(-3) M-circle plus) require production rates (similar to 5 x 10(-7) M-circle plus yr(-1)) similar to those estimated for the bona fide gas-rich debris disk beta Pic.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Water vapor as a probe of the origin of gas in debris disks
    Hasegawa, Yasuhiro
    Nakatani, Riouhei
    Rebollido, Isabel
    Macgregor, Meredith
    Davidsson, Bjoern J. R.
    Lis, Dariusz C.
    Turner, Neal
    Willacy, Karen
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [2] Gas in debris disks
    Jura, M
    Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett, 2004, 324 : 93 - 99
  • [3] Gas in dusty debris disks
    Liseau, R
    TOWARDS OTHER EARTHS: DARWIN/TPF AND THE SEARCH FOR EXTRASOLAR TERRESTRIAL PLANETS, PROCEEDINGS, 2003, 539 : 135 - 142
  • [4] Modeling and Observations of Debris Disks
    Moro-Martin, Amaya
    EXOPLANETS AND DISKS: THEIR FORMATION AND DIVERSITY, 2009, 1158 : 35 - 42
  • [5] MOLECULAR GAS IN YOUNG DEBRIS DISKS
    Moor, A.
    Abraham, P.
    Juhasz, A.
    Kiss, Cs
    Pascucci, I.
    Kospal, A.
    Apai, D.
    Henning, Th
    Csengeri, T.
    Grady, C.
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 740 (01)
  • [6] Numerical modeling of dusty debris disks
    Deller, AT
    Maddison, ST
    ASTROPHYSICAL JOURNAL, 2005, 625 (01): : 398 - 413
  • [7] A Primordial Origin for the Gas-rich Debris Disks around Intermediate-mass Stars
    Nakatani, Riouhei
    Turner, Neal J.
    Hasegawa, Yasuhiro
    Cataldi, Gianni
    Aikawa, Yuri
    Marino, Sebastian
    Kobayashi, Hiroshi
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 959 (02)
  • [8] Observing planetary gaps in the gas of debris disks
    Bergez-Casalou, C.
    Kral, Q.
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [9] Gas and Dust in Debris Disks: What is Normal?
    Roberge, Aki
    Weinberger, Alycia J.
    EXTREME SOLAR SYSTEMS, 2008, 398 : 325 - +
  • [10] MODELING OF DEBRIS DISKS IN SINGLE AND BINARY STARS
    Garcia, L.
    Gomez, M.
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 2016, 52 (02) : 357 - 374