Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel

被引:24
|
作者
Pradhan, M. K. [1 ]
Das, R. [2 ]
机构
[1] Maulana Azad Natl Inst Technol, Bhopal, India
[2] Purushottam Inst Engn & Technol, Rourkela, India
关键词
electrical discharge machining; material removal rate; recurrent Elman networks; SURFACE-ROUGHNESS; MODELS; PREDICTION; EDM; OPTIMIZATION; ELECTRODES; COPPER;
D O I
10.1177/2041297510394083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An Elman network is used for the prediction of material removal rate (MRR) in electrical discharge machining (EDM). An Elman network is a dynamic recurrent neural network that can be used to model non-linear dynamic systems. Training of the models is performed with data from series of EDM experiments on AISI D2 tool steel from finishing, semi-finish to roughing operations. The machining parameters such as discharge current, pulse duration, duty cycle, and voltage were used as model input variables during the development of predictive models. The developed model is validated with a new set of experimental data that was not used for the training step. The mean percentage error of the model is found to be less than 6 per cent, which shows that the proposed model can satisfactorily predict the MRR in EDM.
引用
收藏
页码:414 / 421
页数:8
相关论文
共 50 条
  • [41] Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process
    Choudhary, Rajesh
    Kumar, Harmesh
    Singh, Shankar
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2013, 22 (12) : 3665 - 3673
  • [42] Studies on the effect of cryogenic machining of AISI D2 steel
    Ravi, S.
    Gurusamy, P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2391 - 2395
  • [43] On machining of hardened AISI D2 steel with PCBN tools
    Arsecularatne, JA
    Zhang, LC
    Montross, C
    Mathew, P
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 171 (02) : 244 - 252
  • [44] Prediction of Machining Performances in Hardened AISI D2 Steel
    Kumar, Ramanuj
    Sahoo, Ashok Kumar
    Mishra, Purna Chandra
    Panda, Amlana
    Das, Rabin Kumar
    Roy, Soumikh
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 2486 - 2495
  • [45] Finite Element Modeling of Laser-Assisted Machining of AISI D2 Tool Steel
    Singh, Gurpreet
    Teli, Mahesh
    Samanta, Avik
    Singh, Ramesh
    MATERIALS AND MANUFACTURING PROCESSES, 2013, 28 (04) : 443 - 448
  • [46] Comparison between EDM and grinding machining on fatigue behaviour of AISI D2 tool steel
    de Jesus, Abilio M. P.
    Ramos, Gisela F. S.
    Gomes, Vitor M. G.
    Marques, Maria J.
    de Figueiredo, Miguel A. V.
    Marafona, Jose D. R.
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 139
  • [47] Optimization of EDM process parameters using TOPSIS for machining AISI D2 steel material
    Rao, K. Mangapathi
    Kumar, D. Vinay
    Shekar, K. Chandra
    Singaravel, B.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 701 - 706
  • [48] Effect of electrode material on electrical discharge machining of tool steel surface
    Younis, Mona A.
    Abbas, Mohamed S.
    Gouda, Mostafa A.
    Mahmoud, Fouad H.
    Allah, Sayed A. Abd
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (03) : 977 - 986
  • [49] Architecture and training algorithm of feed forward artificial neural network to predict material removal rate of electrical discharge machining process
    Andromeda, T.
    Yahya, A.
    Mahmud, N.
    Khamis, N. Hisham
    Samion, S.
    Baharom, A.
    SCIENTIA IRANICA, 2014, 21 (06) : 2224 - 2231
  • [50] Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel
    Kansal, H.K.
    Singh, Sehijpal
    Kumar, Pradeep
    Journal of Manufacturing Processes, 2007, 9 (01) : 13 - 22