On Korn's Inequality

被引:44
|
作者
Ciarlet, Philippe G. [1 ]
机构
[1] City Univ Hong Kong, Dept Mathemat, Kowloon, Hong Kong, Peoples R China
关键词
Korn inequality; J. L. Lions lemma;
D O I
10.1007/s11401-010-0606-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincare and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.
引用
收藏
页码:607 / 618
页数:12
相关论文
共 50 条
  • [41] Korn's type inequality in subspaces and thin elastic structures
    Ovtchinnikov, E.E.
    Xanthis, L.S.
    [J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1997, 453 (1964): : 2003 - 2016
  • [42] Inequality of Korn's type on compact surfaces without boundary
    Mardare, S
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2003, 24 (02) : 191 - 204
  • [43] A new Korn's type inequality for thin elastic structures
    Ovtchinnikov, EE
    Xanthis, LS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05): : 577 - 583
  • [44] A new Korn's type inequality for thin elastic structures
    Ovtchinnikov, E. E.
    Xanthis, L. S.
    [J]. Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 324 (05):
  • [45] BMO and Elasticity: Korn's Inequality; Local Uniqueness in Tension
    Spector, Daniel E.
    Spector, Scott J.
    [J]. JOURNAL OF ELASTICITY, 2021, 143 (01) : 85 - 109
  • [46] On Korn's First Inequality in a Hardy-Sobolev Space
    Spector, Daniel E.
    Spector, Scott J.
    [J]. JOURNAL OF ELASTICITY, 2023, 154 (1-4) : 187 - 198
  • [47] THE KORN INEQUALITY FOR JONES DOMAINS
    Duran, Ricardo G.
    Amelia Muschietti, Maria
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [48] A Note on Weighted Korn Inequality
    Man Ru Jiang
    Ren Jin Jiang
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 691 - 698
  • [49] Poincare meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields
    Neff, Patrizio
    Pauly, Dirk
    Witsch, Karl-Josef
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1267 - 1302
  • [50] BMO and Elasticity: Korn’s Inequality; Local Uniqueness in Tension
    Daniel E. Spector
    Scott J. Spector
    [J]. Journal of Elasticity, 2021, 143 : 85 - 109