FRACTURE MODE ANALYSIS OF LITHIUM-ION BATTERY UNDER MECHANICAL LOADING

被引:0
|
作者
Luo, Hailing [1 ]
Jiang, Xuqian [1 ]
Xia, Yong [1 ]
Zhou, Qing [1 ]
机构
[1] Tsinghua Univ, Dept Automot, State Key Lab Automot Safety & Energy, Beijing, Peoples R China
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 9 | 2016年
关键词
REPRESENTATIVE VOLUME ELEMENTS; SHORT-CIRCUIT; CELLS; BEHAVIOR; LITHIATION; SIMULATION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Due to its extensive application, the safety issue of lithium ion battery has received increasing attention. For crashworthiness design of battery in electric vehicles, it is of great importance to investigate the response of the battery under mechanical loading and understand the mechanism of internal short circuit. Quasi-static and intermediate strain rate uniaxial tension tests were conducted on the electrodes and the separators. The high speed camera and DIC (digital image correlation) method were adopted to measure the strain while a self-design load cell was used to measure force in dynamic test. Either loading velocity or loading direction was varied in different tests. The upper limit of the test strain rate achieved 66 /sec. All the component materials showed strain rate dependency and separators demonstrated noticeable anisotropy. Quasi-static penetration tests were conducted on two different types of pouch cell using steel and plastic punch heads. For both Type A pouch cell and Type B pouch cell, during penetration process using plastic punch head, no significant voltage drop or temperature rise was observed. During penetration process using steel punch head, only Type A pouch cell produced short circuit. When the punch head was removed, the voltage of the cells could recover to certain level. From post mortem examination, it was found that for a single pouch cell, all the electrodes presented the same fracture mode that the stacked anode and cathode formed several fragments in the penetration path, while the separators in between only formed a central crack when the punch head went through. Since the separators had a larger elongation ratio than the electrodes, the extended separators around the rupture location could block the direct and constant contact between anode and cathode, electrodes and steel punch, which explained why no massive internal short circuit was initiated. The drop tower was used to conduct dynamic penetration test. The 'results indicated that under dynamic loading, internal short circuit was more likely to be triggered which can be explained by the strain rate effect of the separators. This study highlighted the importance of the separator to the safety performance of pouch cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Thermal analysis of a cylindrical lithium-ion battery
    Zhang, Xiongwen
    ELECTROCHIMICA ACTA, 2011, 56 (03) : 1246 - 1255
  • [22] Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading
    Liu, Binghe
    Zhao, Hui
    Yu, Huili
    Li, Jie
    Xu, Jun
    ELECTROCHIMICA ACTA, 2017, 256 : 172 - 184
  • [23] Mechanical behaviors and ion transport variation of lithium-ion battery separators under various compression conditions
    Ding, Lei
    Li, Dandan
    Du, Fanghui
    Zhang, Daoxin
    Zhang, Sihang
    Xu, Ruizhang
    Wu, Tong
    JOURNAL OF POWER SOURCES, 2022, 543
  • [24] Grouping mode optimization of lithium-ion energy storage battery
    Yan G.
    Cai C.
    Duan S.
    Li J.
    Liu Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (04): : 148 - 153
  • [25] Sensitivity Analysis of Lithium-Ion Battery Model to Battery Parameters
    Rahimi-Eichi, Habiballah
    Balagopal, Bharat
    Chow, Mo-Yuen
    Yeo, Tae-Jung
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 6794 - 6799
  • [26] Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading
    Li, Zhijie
    Chen, Jiqing
    Lan, Fengchong
    Li, Yigang
    ENERGIES, 2021, 14 (05)
  • [27] Analysis on Heat Generation in a Lithium-Ion Battery Under Constant Power Discharging
    Gan Y.
    Tan M.
    Liang J.
    Luo Y.
    Wang J.
    He L.
    1600, South China University of Technology (48): : 1 - 8
  • [28] Battery Electrode Mass Loading Prognostics and Analysis for Lithium-Ion Battery-Based Energy Storage Systems
    Chen, Tao
    Song, Meng
    Hui, Hongxun
    Long, Huan
    FRONTIERS IN ENERGY RESEARCH, 2021, 9 (09):
  • [29] Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling?
    Vanderburgt, Stephen
    Santos, Rafael M.
    Chiang, Yi Wai
    RESOURCES CONSERVATION AND RECYCLING, 2023, 189
  • [30] Toward the performance evolution of lithium-ion battery upon impact loading
    Zhou, Dian
    Li, Honggang
    Li, Zhihao
    Zhang, Chao
    ELECTROCHIMICA ACTA, 2022, 432