Learning on a Grassmann Manifold: CSI Quantization for Massive MIMO Systems

被引:4
|
作者
Bhogi, Keerthana [1 ]
Saha, Chiranjib [1 ]
Dhillon, Harpreet S. [1 ]
机构
[1] Virginia Tech, Dept ECE, Wireless VT, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Massive MIMO; FD-MIMO; FDD; beamforming; codebook; machine learning; Grassmann manifold; K-means clustering; LIMITED FEEDBACK; COMMUNICATION; DIVERSITY; DESIGN;
D O I
10.1109/IEEECONF51394.2020.9443476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the design of beamforming codebooks that maximize the average normalized beamforming gain for any underlying channel distribution. While the existing techniques use statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate beamforming codebooks that adapt to the surrounding propagation conditions. The key technical contribution lies in reducing the codebook design problem to an unsupervised clustering problem on a Grassmann manifold where the cluster centroids form the finite-sized beamforming codebook for the channel state information (CSI), which can be efficiently solved using K-means clustering. This approach is extended to develop a remarkably efficient procedure for designing product codebooks for full-dimension (FD) multiple-input multiple-output (MIMO) systems with uniform planar array (UPA) antennas. Simulation results demonstrate the capability of the proposed design criterion in learning the codebooks, reducing the codebook size and producing noticeably higher beamforming gains compared to the existing state-of-the-art CSI quantization techniques.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 50 条
  • [21] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [22] Joint CSI Acquisition Based on Deep Learning for FDD Massive MIMO Systems
    Li, Mengxin
    He, Jing
    Cheng, Yuan
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 980 - 987
  • [23] Deep Learning based CSI Reconstruction with Limited Feedback for Massive MIMO Systems
    Wang, Xin
    Hou, Xiaolin
    Chen, Lan
    Kishiyama, Yoshihisa
    Asai, Takahiro
    13TH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND UBIQUITOUS NETWORK (ICMU2021), 2021,
  • [24] Sensing-aided CSI Feedback with Deep Learning for Massive MIMO Systems
    Zhang, Xudong
    Lu, Zhilin
    Wang, Jintao
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2282 - 2287
  • [25] CSI Feedback With Model-Driven Deep Learning of Massive MIMO Systems
    Guo, Jianhua
    Wang, Lei
    Li, Feng
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 547 - 551
  • [26] Federated Learning for DL-CSI Prediction in FDD Massive MIMO Systems
    Hou, Weihao
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Elbir, Ahmet M.
    Gacanin, Haris
    Sari, Hikmet
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1810 - 1814
  • [27] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [28] Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems
    Zhang, Xudong
    Wang, Jintao
    Lu, Zhilin
    Zhang, Hengyu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (03) : 557 - 561
  • [29] Quantization Adaptor for Bit-Level Deep Learning-Based Massive MIMO CSI Feedback
    Zhang, Xudong
    Lu, Zhilin
    Zeng, Rui
    Wang, Jintao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5443 - 5453
  • [30] Clustering Algorithm-Based Quantization Method for Massive MIMO CSI Feedback
    Shen, Jinghan
    Liang, Xin
    Gu, Xinyu
    Zhang, Lin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (10) : 2155 - 2159