Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique

被引:12
|
作者
Bhattacharjee, Nirjhar [1 ]
Mahalingam, Krishnamurthy [2 ]
Fedorko, Adrian [3 ]
Lauter, Valeria [4 ]
Matzelle, Matthew [3 ]
Singh, Bahadur [5 ]
Grutter, Alexander [6 ]
Will-Cole, Alexandria [1 ]
Page, Michael [2 ]
McConney, Michael [2 ]
Markiewicz, Robert [3 ]
Bansil, Arun [3 ]
Heiman, Don [3 ,7 ]
Sun, Nian Xiang [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Air Force Res Lab, Nanoelect Mat Branch, Boston, OH 05433 USA
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Boston, TN 37831 USA
[5] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Mumbai 400005, Maharashtra, India
[6] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[7] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ferromagnets; interface; magnetic topological insulators; topological insulators; van der Waals materials; EXCHANGE BIAS; INSULATOR; INTERFACE; REALIZATION; STATE;
D O I
10.1002/adma.202108790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2Te3/Ni80Fe20 because of diffusion of Ni in Bi2Te3 (Ni-Bi2Te3). The AFM property of the Ni-Bi2Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2Te4 in the Ni-Bi2Te3 interface layer. The Neel temperature of the Ni-Bi2Te3 layer is approximate to 63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
    Li, Zhilei
    Li, Yinxiang
    Wang, Yiting
    Chen, Wenzhi
    Chen, Bin
    CHINESE PHYSICS B, 2024, 33 (08)
  • [42] Valley-dependent multiple quantum states and topological transitions in germanene-based ferromagnetic van der Waals heterostructures
    Xue, Feng
    Li, Jiaheng
    Liu, Yizhou
    Wu, Ruqian
    Xu, Yong
    Duan, Wenhui
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [43] Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3
    Zhang, Xiaoqian
    Ambhire, Siddhesh C.
    Lu, Qiangsheng
    Niu, Wei
    Cook, Jacob
    Jiang, Jidong Samuel
    Hong, Deshun
    Alahmed, Laith
    He, Liang
    Zhang, Rong
    Xu, Yongbing
    Zhang, Steven S-L
    Li, Peng
    Bian, Guang
    ACS NANO, 2021, 15 (10) : 15710 - 15719
  • [44] Robust second-order topological insulator in 2D van der Waals magnet CrI3
    Zou, Xiaorong
    Bai, Yingxi
    Dai, Ying
    Huang, Baibiao
    Niu, Chengwang
    MATERIALS HORIZONS, 2024, 11 (24) : 6416 - 6422
  • [45] Rhombohedral Sb2Se3 as an intrinsic topological insulator due to strong van der Waals interlayer coupling
    Cao, Guohua
    Liu, Huijun
    Liang, Jinghua
    Cheng, Long
    Fan, Dengdong
    Zhang, Zhenyu
    PHYSICAL REVIEW B, 2018, 97 (07)
  • [46] van der Waals Stacking-Induced Topological Phase Transition in Layered Ternary Transition Metal Chalcogenides
    Liu, Junwei
    Wang, Hua
    Fang, Chen
    Fu, Liang
    Qian, Xiaofeng
    NANO LETTERS, 2017, 17 (01) : 467 - 475
  • [47] Growth and characterization of van der Waals heterostuctures formed by the topological insulator Bi2Se3 and the trivial insulator SnSe2
    Matetskiy, A. V.
    Kibirev, I. A.
    Zotov, A. V.
    Saranin, A. A.
    APPLIED PHYSICS LETTERS, 2016, 109 (02)
  • [48] CMOS-Compatible Fabrication of 2D Semiconductor-Based CFETs via High-k Dielectric van der Waals Encapsulation
    Yan, Yujia
    Yan, Tao
    Wang, Feng
    Zhu, Yuhan
    Li, Shuhui
    Cai, Yuchen
    Zhang, Fuyuan
    Wang, Yanrong
    Liu, Xiaolin
    Xu, Kai
    He, Jun
    Zhan, Xueying
    Lin, Jia
    Wang, Zhenxing
    NANO LETTERS, 2025,
  • [49] All van der Waals Three-Terminal SOT-MRAM Realized by Topological Ferromagnet Fe3GeTe2
    Cui, Jingyuan
    Zhang, Kai-Xuan
    Park, Je-Geun
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (09)
  • [50] Topological insulator MnBi2Te4 and its van der Waals heterostructure for sensitive room-temperature terahertz photodetection
    Guo, Shuguang
    He, Yuan
    Lv, Xuyang
    Jiang, Mengjie
    Wei, Yingdong
    Deng, Yu
    Pan, Xiaokai
    Lan, Shiqi
    Wang, Dong
    Liu, Aiyun
    Guo, Cheng
    Wang, Lin
    2D MATERIALS, 2024, 11 (03)