Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique

被引:12
|
作者
Bhattacharjee, Nirjhar [1 ]
Mahalingam, Krishnamurthy [2 ]
Fedorko, Adrian [3 ]
Lauter, Valeria [4 ]
Matzelle, Matthew [3 ]
Singh, Bahadur [5 ]
Grutter, Alexander [6 ]
Will-Cole, Alexandria [1 ]
Page, Michael [2 ]
McConney, Michael [2 ]
Markiewicz, Robert [3 ]
Bansil, Arun [3 ]
Heiman, Don [3 ,7 ]
Sun, Nian Xiang [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Air Force Res Lab, Nanoelect Mat Branch, Boston, OH 05433 USA
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Boston, TN 37831 USA
[5] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Mumbai 400005, Maharashtra, India
[6] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[7] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ferromagnets; interface; magnetic topological insulators; topological insulators; van der Waals materials; EXCHANGE BIAS; INSULATOR; INTERFACE; REALIZATION; STATE;
D O I
10.1002/adma.202108790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2Te3/Ni80Fe20 because of diffusion of Ni in Bi2Te3 (Ni-Bi2Te3). The AFM property of the Ni-Bi2Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2Te4 in the Ni-Bi2Te3 interface layer. The Neel temperature of the Ni-Bi2Te3 layer is approximate to 63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
    Hu, Chaowei
    Gordon, Kyle N.
    Liu, Pengfei
    Liu, Jinyu
    Zhou, Xiaoqing
    Hao, Peipei
    Narayan, Dushyant
    Emmanouilidou, Eve
    Sun, Hongyi
    Liu, Yuntian
    Brawer, Harlan
    Ramirez, Arthur P.
    Ding, Lei
    Cao, Huibo
    Liu, Qihang
    Dessau, Dan
    Ni, Ni
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
    Chaowei Hu
    Kyle N. Gordon
    Pengfei Liu
    Jinyu Liu
    Xiaoqing Zhou
    Peipei Hao
    Dushyant Narayan
    Eve Emmanouilidou
    Hongyi Sun
    Yuntian Liu
    Harlan Brawer
    Arthur P. Ramirez
    Lei Ding
    Huibo Cao
    Qihang Liu
    Dan Dessau
    Ni Ni
    Nature Communications, 11
  • [3] Electrically Tunable Topological Phase Transition in van der Waals Heterostructures
    Li, Jie
    Wu, Ruqian
    NANO LETTERS, 2023, 23 (06) : 2173 - 2178
  • [4] Topological Spin Textures in an Insulating van der Waals Ferromagnet
    Grebenchuk, Sergey
    Mckeever, Conor
    Grzeszczyk, Magdalena
    Chen, Zhaolong
    Siskins, Makars
    McCray, Arthur R. C.
    Li, Yue
    Petford-Long, Amanda K.
    Phatak, Charudatta M.
    Ruihuan, Duan
    Zheng, Liu
    Novoselov, Kostya S.
    Santos, Elton J. G.
    Koperski, Maciej
    ADVANCED MATERIALS, 2024, 36 (24)
  • [5] Antiferromagnetic topological magnetism in synthetic van der Waals antiferromagnets
    Cui, Qirui
    Zhu, Yingmei
    Liang, Jinghua
    Cui, Ping
    Yang, Hongxin
    PHYSICAL REVIEW B, 2023, 107 (06)
  • [6] Phase Transition and Raman Evolution in Pressurized Antiferromagnetism van der Waals Topological Insulator
    Zhao, Zhangji
    Hu, Chaowei
    Kavner, Abby
    Ni, Ni
    Wong, Chee Wei
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [7] Band Engineering of Dirac Surface States in Topological-Insulator-Based van der Waals Heterostructures
    Chang, Cui-Zu
    Tang, Peizhe
    Feng, Xiao
    Li, Kang
    Ma, Xu-Cun
    Duan, Wenhui
    He, Ke
    Xue, Qi-Kun
    PHYSICAL REVIEW LETTERS, 2015, 115 (13)
  • [8] Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions
    Chong, Su Kong
    Han, Kyu Bum
    Nagaoka, Akira
    Tsuchikawa, Ryuichi
    Liu, Renlong
    Liu, Haoliang
    Vardeny, Zeev Valy
    Pesin, Dmytro A.
    Lee, Changgu
    Sparks, Taylor D.
    Deshpande, Vikram V.
    NANO LETTERS, 2018, 18 (12) : 8047 - 8053
  • [9] Gate-Tunable Anomalous Hall Effect in Stacked van der Waals Ferromagnetic Insulator-Topological Insulator Heterostructures
    Allcca, Andres E. Llacsahuanga
    Pan, Xing-Chen
    Miotkowski, Ireneusz
    Tanigaki, Katsumi
    Chen, Yong P.
    NANO LETTERS, 2022, 22 (20) : 8130 - 8136
  • [10] Ferroelectric Semimetals with α-Bi / SnSe van der Waals Heterostructures and Their Topological Currents
    de Sousa, D. J. P.
    Lee, Seungjun
    Lu, Qiangsheng
    Moore, Rob G.
    Brahlek, Matthew
    Wang, J. -P.
    Bian, Guang
    Low, Tony
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)