In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment-trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets.
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Alves, Rodrigo Silva
Teodoro, Paulo Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Teodoro, Paulo Eduardo
Peixoto, Leonardo de Azevedo
论文数: 0引用数: 0
h-index: 0
机构:
Monsanto Co, Ave Nacoes Unidas 12901, BR-04578000 Sao Paulo, SP, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Peixoto, Leonardo de Azevedo
Santos de Carvalho Rocha, Joao Romero do Amaral
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Santos de Carvalho Rocha, Joao Romero do Amaral
Silva, Lidiane Aparecida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Silva, Lidiane Aparecida
Laviola, Bruno Galveas
论文数: 0引用数: 0
h-index: 0
机构:
Embrapa Agroenergia, Parque Estacao Biol, BR-70770901 Brasilia, DF, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Laviola, Bruno Galveas
Vilela de Resende, Marcos Deon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Embrapa Florestas, Estr Ribeira,Km 111, BR-83411000 Colombo, PR, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
Vilela de Resende, Marcos Deon
Bhering, Leonardo Lopes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, BrazilUniv Fed Vicosa, Ave Peter Henry Rolfs,Campus Univ, BR-36570900 Vicosa, MG, Brazil
机构:
Univ New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, AustraliaUniv New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, Australia
Henshall, JM
Goddard, ME
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, AustraliaUniv New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, Australia