Linear liftings of skew symmetric tensor fields of type (1,2) to Weil bundles

被引:2
|
作者
Debecki, Jacek [1 ]
机构
[1] Uniwersytetu Jagiellonskiego, Inst Matemat, PL-30348 Krakow, Poland
关键词
natural operator; Weil bundle; PRODUCT-PRESERVING FUNCTORS; CONNECTIONS; MANIFOLDS;
D O I
10.1007/s10587-010-0084-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper contains a classification of linear liftings of skew symmetric tensor fields of type (1, 2) on n-dimensional manifolds to tensor fields of type (1, 2) on Weil bundles under the condition that n a (c) 3/4 3. It complements author's paper "Linear liftings of symmetric tensor fields of type (1, 2) to Weil bundles" (Ann. Polon. Math. 92, 2007, pp. 13-27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author's paper "Affine liftings of torsion-free connections to Weil bundles" (Colloq. Math. 114, 2009, pp. 1-8) and get a classification of affine liftings of all linear connections to Weil bundles.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [21] Linear natural operators lifting p-vectors to tensors of type (q, 0) on Weil bundles
    Jacek Dębecki
    Czechoslovak Mathematical Journal, 2016, 66 : 511 - 525
  • [22] Linear natural operators lifting p-vectors to tensors of type (q, 0) on Weil bundles
    Debecki, Jacek
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 511 - 525
  • [23] SKEW-SYMMETRIC TENSOR-SPINOR FORMULATION OF SPIN 3/2 FIELD
    FISK, C
    TAIT, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (03): : 383 - 392
  • [24] Cheeger-gromoll type metrics on the (1,1)-tensor bundles
    E. Peyghan
    A. Tayebi
    L. Nourmohammadifar
    Journal of Contemporary Mathematical Analysis, 2013, 48 : 247 - 258
  • [25] Cheeger-gromoll type metrics on the (1,1)-tensor bundles
    Peyghan, E.
    Tayebi, A.
    Nourmohammadifar, L.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2013, 48 (06): : 247 - 258
  • [26] On skew-symmetric recurrent tensor fields of second order in 4-dimensional manifolds with neutral metric signature
    Kirik, Bahar
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 93 (3-4): : 487 - 509
  • [27] On Decomposing N=2 Line Bundles as Tensor Products of N=1 Line Bundles
    Fausto Ongay
    Jeffrey M. Rabin
    Letters in Mathematical Physics, 2002, 61 : 101 - 106
  • [28] On decomposing N=2 line bundles as tensor products of N=1 line bundles
    Ongay, F
    Rabin, JM
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (02) : 101 - 106
  • [29] Visualizing 3-D Symmetric Tensor Fields Using a Type of Surface Icons
    Song Weijie
    Cui Junzhi
    Ye Zhenglin
    2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 627 - +
  • [30] Determinants of (-1,1)-matrices of the skew-symmetric type: a cocyclic approach
    Alvarez, Vctor
    Armario, Jose Andres
    Frau, Maria Dolores
    Gudiel, Felix
    OPEN MATHEMATICS, 2015, 13 (01): : 16 - 25