Automatic extraction of clusters from hierarchical clustering representations

被引:0
|
作者
Sander, J [1 ]
Qin, XJ [1 ]
Lu, ZY [1 ]
Niu, N [1 ]
Kovarsky, A [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
关键词
hierarchical clustering; OPTICS; single-link method; dendrogram; reachability-plot;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of a data set than partitioning algorithms. However, hierarchical clustering algorithms do not actually create clusters, but compute only a hierarchical representation, of the data set. This makes them unsuitable as an automatic pre-processing step for other algorithms that operate on detected clusters. This is true for both dendrograms and reachability plots, which have been proposed as hierarchical clustering representations, and which have different advantages and disadvantages. In this paper we first investigate the relation between dendrograms and reachability plots and introduce methods to convert them into each other showing that they essentially contain the same information. Based on reachability plots, we then introduce a technique that automatically determines the significant clusters in a hierarchical cluster representation. This makes it for the first time possible to use hierarchical clustering as an automatic pre-processing step that requires no user interaction to select clusters from a hierarchical cluster representation.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
  • [41] FedHC: Learning Imbalanced Clusters via Federated Hierarchical Clustering
    Zhang, Yue
    Liao, Xinfa
    Chen, Qingsheng
    Wu, Haotian
    Zhang, Yiqun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 505 - 521
  • [42] Clinical and biological clusters of sepsis patients using hierarchical clustering
    Papin, Gregory
    Bailly, Sebastien
    Dupuis, Claire
    Ruckly, Stephane
    Gainnier, Marc
    Argaud, Laurent
    Azoulay, Elie
    Adrie, Christophe
    Souweine, Bertrand
    Goldgran-Toledano, Dany
    Marcotte, Guillaume
    Gros, Antoine
    Reignier, Jean
    Mourvillier, Bruno
    Forel, Jean-Marie
    Sonneville, Romain
    Dumenil, Anne-Sylvie
    Darmon, Michael
    Garrouste-Orgeas, Maite
    Schwebel, Carole
    Timsit, Jean-Francois
    PLOS ONE, 2021, 16 (08):
  • [43] Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
    Salvador, S
    Chan, P
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 576 - 584
  • [44] Compressed Hierarchical Representations for Multi-Task Learning and Task Clustering
    de Freitas, Joao Machado
    Berg, Sebastian
    Geiger, Bernhard C.
    Muecke, Manfred
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [45] Automatic Hierarchical Clustering of Static Call Graphs for Program Comprehension
    Gharibi, Gharib
    Alanazi, Rakan
    Lee, Yugyung
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4016 - 4025
  • [46] Improvements on Hierarchical Language Identification based on automatic language clustering
    Yin, Bo
    Ambikairajah, Eliathamby
    Chen, Fang
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4241 - 4244
  • [47] Exploiting second-order dissimilarity representations for hierarchical clustering and visualization
    Helena Aidos
    Data Mining and Knowledge Discovery, 2022, 36 : 1371 - 1400
  • [48] Performance improvement in automatic gender identification using hierarchical clustering
    Keyvanrad M.A.
    Homayounpour M.M.
    2010 5th International Symposium on Telecommunications, IST 2010, 2010, : 900 - 903
  • [49] Exploiting second-order dissimilarity representations for hierarchical clustering and visualization
    Aidos, Helena
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (04) : 1371 - 1400
  • [50] Automatic creation of mining polygons using hierarchical clustering techniques
    M. Tabesh
    H. Askari-Nasab
    Journal of Mining Science, 2013, 49 : 426 - 440