Human-in-the-loop Bayesian optimization of wearable device parameters

被引:59
|
作者
Kim, Myunghee [1 ,2 ]
Ding, Ye [1 ,2 ]
Malcolm, Philippe [1 ,2 ,3 ,4 ]
Speeckaert, Jozefien [1 ,2 ]
Siviy, Christoper J. [1 ,2 ]
Walsh, Conor J. [1 ,2 ]
Kuindersma, Scott [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Univ Nebraska, Dept Biomech, Omaha, NE 68182 USA
[4] Univ Nebraska, Ctr Res Human Movement Variabil, Omaha, NE 68182 USA
来源
PLOS ONE | 2017年 / 12卷 / 09期
基金
美国国家科学基金会;
关键词
CMA EVOLUTION STRATEGY; PUSH-OFF WORK; EXOSKELETON ASSISTANCE; GLOBAL OPTIMIZATION; METABOLIC-RATE; WALKING; PROSTHESIS; REGRESSION; COST; SLOW;
D O I
10.1371/journal.pone.0184054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signalto- noise ratio. We evaluate the use of Bayesian optimization-a family of sample-efficient, noise-tolerant, and global optimization methods-for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (+/- 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01).
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The characteristics of human-robot coadaptation during human-in-the-loop optimization of exoskeleton control
    Wang, Wei
    Liu, Yige
    Ren, Pengqing
    Zhang, Juanjuan
    Liu, Jingtai
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 1459 - 1464
  • [42] Human-in-the-Loop Optimization of Exoskeleton Assistance Via Online Simulation of Metabolic Cost
    Gordon, Daniel F. N.
    McGreavy, Christopher
    Christou, Andreas
    Vijayakumar, Sethu
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (03) : 1410 - 1429
  • [43] Dynamic Human-in-the-Loop Assertion Generation
    Zamprogno, Lucas
    Hall, Braxton
    Holmes, Reid
    Atlee, Joanne M.
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (04) : 2337 - 2351
  • [44] Human-in-the-loop visually servoed tracking
    Stanciu, RI
    Oh, PY
    [J]. CCCT 2003, VOL 5, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: II, 2003, : 318 - 323
  • [45] Scalable Human-in-the-Loop Decision Support
    Georgescu, Ramona
    Reddy, Kishore
    Trcka, Nikola
    Chen, Mei
    Quimby, Paul
    O'Neill, Paul
    Khawaja, Taimoor
    Bertuccelli, Luca
    Hestand, Dan
    Sarkar, Soumik
    Erdinc, Ozgur
    Giering, Michael
    [J]. 2015 IEEE AEROSPACE CONFERENCE, 2015,
  • [46] Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective
    Arora, Yashika
    Dutta, Anirban
    [J]. BRAIN SCIENCES, 2022, 12 (10)
  • [47] Investigating Positive and Negative Qalities of Human-in-the-Loop Optimization for Designing Interaction Techniques
    Chan, Liwei
    Liao, Yi-Chi
    Mo, George B.
    Dudley, John J.
    Cheng, Chun-Lien
    Kristensson, Per Ola
    Oulasvirta, Antti
    [J]. PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
  • [48] Optimization-Based Human-in-the-Loop Manipulation Using Joint Space Polytopes
    Long, Philip
    Kelestemur, Tarik
    Onol, Aykut Ozgun
    Padir, Taskin
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 204 - 210
  • [49] Human models in human-in-the-loop control systems
    Mabrok, Mohamed A.
    Mohamed, Hassan K.
    Abdel-Aty, Abdel-Haleem
    Alzahrani, Ahmed S.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2611 - 2622
  • [50] From Human-in-the-Loop to Human-in-Power
    Zheng, Elise Li
    Jin, Weina
    Hamarneh, Ghassan
    Lee, Sandra Soo-Jin
    [J]. AMERICAN JOURNAL OF BIOETHICS, 2024, 24 (09): : 84 - 86