Human-in-the-loop Bayesian optimization of wearable device parameters

被引:59
|
作者
Kim, Myunghee [1 ,2 ]
Ding, Ye [1 ,2 ]
Malcolm, Philippe [1 ,2 ,3 ,4 ]
Speeckaert, Jozefien [1 ,2 ]
Siviy, Christoper J. [1 ,2 ]
Walsh, Conor J. [1 ,2 ]
Kuindersma, Scott [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Univ Nebraska, Dept Biomech, Omaha, NE 68182 USA
[4] Univ Nebraska, Ctr Res Human Movement Variabil, Omaha, NE 68182 USA
来源
PLOS ONE | 2017年 / 12卷 / 09期
基金
美国国家科学基金会;
关键词
CMA EVOLUTION STRATEGY; PUSH-OFF WORK; EXOSKELETON ASSISTANCE; GLOBAL OPTIMIZATION; METABOLIC-RATE; WALKING; PROSTHESIS; REGRESSION; COST; SLOW;
D O I
10.1371/journal.pone.0184054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signalto- noise ratio. We evaluate the use of Bayesian optimization-a family of sample-efficient, noise-tolerant, and global optimization methods-for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (+/- 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01).
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Human-in-the-loop development of soft wearable robots
    Conor Walsh
    [J]. Nature Reviews Materials, 2018, 3 : 78 - 80
  • [2] Human-in-the-loop development of soft wearable robots
    Walsh, Conor
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (06): : 78 - 80
  • [3] Human-in-the-loop optimization of wearable robots to reduce the human metabolic energy cost in physical movements
    Fang, Jing
    Yuan, Yuan
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 127
  • [4] Human model in the loop design optimization for RoboWalk wearable device
    Nabipour, Mahdi
    Moosavian, S. Ali A.
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (10) : 4685 - 4693
  • [5] Human model in the loop design optimization for RoboWalk wearable device
    Mahdi Nabipour
    S. Ali A. Moosavian
    [J]. Journal of Mechanical Science and Technology, 2021, 35 : 4685 - 4693
  • [6] Human-in-the-Loop Optimization of Wearable Robotic Devices to Improve Human-Robot Interaction: A Systematic Review
    Diaz, Maria Alejandra
    Voss, Matthias
    Dillen, Arnau
    Tassignon, Bruno
    Flynn, Louis
    Geeroms, Joost
    Meeusen, Romain
    Verstraten, Tom
    Babic, Jan
    Beckerle, Philipp
    De Pauw, Kevin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (12) : 7483 - 7496
  • [7] Human-in-the-loop for Bayesian autonomous materials phase mapping
    Adams, Felix
    McDannald, Austin
    Takeuchi, Ichiro
    Kusne, Gilad
    [J]. MATTER, 2024, 7 (02) : 697 - 709
  • [8] Human-in-the-Loop Optimization for Artificial Intelligence Algorithms
    Farhood, Helia
    Saberi, Morteza
    Najafi, Mohammad
    [J]. SERVICE-ORIENTED COMPUTING, ICSOC 2021 WORKSHOPS, 2022, 13236 : 92 - 102
  • [9] Human-in-the-loop optimization of visual prosthetic stimulation
    Fauvel, Tristan
    Chalk, Matthew
    [J]. JOURNAL OF NEURAL ENGINEERING, 2022, 19 (03)
  • [10] Exploring surface electromyography (EMG) as a feedback variable for the human-in-the-loop optimization of lower limb wearable robotics
    Grimmer, Martin
    Zeiss, Julian
    Weigand, Florian
    Zhao, Guoping
    [J]. FRONTIERS IN NEUROROBOTICS, 2022, 16