FFT and Sparse FFT techniques and applications

被引:0
|
作者
Mohapatra, Badri Narayan [1 ]
Mohapatra, Rashmita Kumari [1 ]
机构
[1] Centurion Univ, Fiber Opt, Rajaseetapuram, Orissa, India
关键词
Signal Processing; DFT; FFT; Radix FFT; Sparse FFT; COMPUTATION; TRANSFORM; PROCESSOR; NMR;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, the FFT is used in different areas, starting from identification of frequency on mechanical vibration to image enhancement. Real-time computation by interpret the acquired data can be easily possible by Fast Fourier Transform (FFT). The best with an efficient algorithm is FFT so it is the foundation for analyzing, monitoring, and controlling various systems. Many applications like digital signal processing, partial differential equation solvers, communications, image processing, all most all Fourier coefficients are very small and known as sparse. In this paper we present different impact of fft and sparse fft in the areas of medical imaging, wireless communication.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] FFT compiler techniques
    Kral, S
    Franchetti, F
    Lorenz, J
    Ueberhuber, CW
    Wurzinger, P
    [J]. COMPILER CONSTRUCTION, PROCEEDINGS, 2004, 2985 : 217 - 231
  • [2] A Novel Algorithm for Sparse FFT pruning and its Applications to OFDMA Technology
    Abdulla, Shakeel S.
    Nam, Haewoon
    Abraham, Jacob A.
    [J]. 2014 IEEE INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2014,
  • [3] Recursion algorithm for FFT with sparse points
    Zhao, Jianyang
    Zhang, Lingmi
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2006, 25 (02): : 48 - 50
  • [4] Deterministic sparse FFT for M-sparse vectors
    Plonka, Gerlind
    Wannenwetsch, Katrin
    Cuyt, Annie
    Lee, Wen-shin
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (01) : 133 - 159
  • [5] Deterministic sparse FFT for M-sparse vectors
    Gerlind Plonka
    Katrin Wannenwetsch
    Annie Cuyt
    Wen-shin Lee
    [J]. Numerical Algorithms, 2018, 78 : 133 - 159
  • [6] A sparse FFT approach for ODE with random coefficients
    Bochmann, Maximilian
    Kaemmerer, Lutz
    Potts, Daniel
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (05)
  • [7] MP based signal sparse decomposition with FFT
    School of Comp. and Commun. Engineering, Southwest Jiaotong University, Chengdu 610031, China
    不详
    [J]. Dianzi Yu Xinxi Xuebao, 2006, 4 (614-618):
  • [8] Sparse Interpolation, the FFT Algorithm and FIR Filters
    Briani, Matteo
    Cuyt, Annie
    Lee, Wen-shin
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 27 - 39
  • [9] A sparse FFT approach for ODE with random coefficients
    Maximilian Bochmann
    Lutz Kämmerer
    Daniel Potts
    [J]. Advances in Computational Mathematics, 2020, 46
  • [10] Optimized Spectrum Permutation for the Multidimensional Sparse FFT
    Rauh, Andre
    Arce, Gonzalo R.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (01) : 162 - 172