Optimized Spectrum Permutation for the Multidimensional Sparse FFT

被引:11
|
作者
Rauh, Andre [1 ]
Arce, Gonzalo R. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19711 USA
关键词
Fast Fourier transforms;
D O I
10.1109/TSP.2016.2599483
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multidimensional sparse fast Fourier transform algorithm is introduced via generalizations of key concepts used in the one-dimensional (1-D) sparse Fourier transform algorithm. It is shown that permutation parameters are of key importance and should not be chosen randomly but instead can be optimized. A connection is made between the sparse Fourier transform algorithm and lattice theory, thus establishing a rigorous understanding of the effect of the permutations on the algorithm performance. Lattice theory is then used to optimize the set of parameters to achieve a more robust and better performing algorithm. Other algorithms using pseudorandom spectrum permutation can also benefit from the methods developed in this paper. The contributions address the case of the exact k-sparse Fourier transform but the underlying concepts can be applied to the general case of finding a k-sparse approximation of the Fourier transform of an arbitrary signal. Simulations illustrate the efficiency and accuracy of the proposed algorithm. The optimizations of the parameters and the improved performance are shown in simulations for the 2-D case where worst case and average case peak signal-to-noise ratio (PSNR) improves by several decibels.
引用
收藏
页码:162 / 172
页数:11
相关论文
共 50 条
  • [1] Spectrum of multidimensional Schrodinger operators with sparse potentials
    Molchanov, S
    Vainberg, B
    [J]. ANALYTICAL AND COMPUTATIONAL METHODS IN SCATTERING AND APPLIED MATHEMATICS, 2000, 417 : 231 - 254
  • [2] FFT and Sparse FFT techniques and applications
    Mohapatra, Badri Narayan
    Mohapatra, Rashmita Kumari
    [J]. 2017 FOURTEENTH INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS (WOCN), 2017,
  • [3] Optimized FFT and Filter Bank Based Spectrum Sensing for Bluetooth Signal
    Dikmese, Sener
    Renfors, Markku
    [J]. 2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2012,
  • [4] OPTIMIZED PERMUTATION MODULATION
    INGEMARSSON, I
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) : 1098 - 1100
  • [5] MINIMIZING COMMUNICATION IN THE MULTIDIMENSIONAL FFT
    Koopman, Thomas
    Bisseling, Rob H.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (06): : C330 - C347
  • [6] A framework for the design and implementation of FFT permutation algorithms
    Seguel, J
    Bollman, D
    Feo, J
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2000, 11 (07) : 625 - 635
  • [7] Deterministic sparse FFT for M-sparse vectors
    Plonka, Gerlind
    Wannenwetsch, Katrin
    Cuyt, Annie
    Lee, Wen-shin
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (01) : 133 - 159
  • [8] Deterministic sparse FFT for M-sparse vectors
    Gerlind Plonka
    Katrin Wannenwetsch
    Annie Cuyt
    Wen-shin Lee
    [J]. Numerical Algorithms, 2018, 78 : 133 - 159
  • [9] An optimized FFT pruning algorithm
    Hu, Z
    Chakravarthi, P
    [J]. COLLECTION OF THE 18TH AIAA INTERNATIONAL COMMUNICATIONS SATELLITE SYSTEMS CONFERENCE AND EXHIBIT, TECHNICAL PAPERS, VOLS 1 AND 2, 2000, : 353 - 358
  • [10] Recursion algorithm for FFT with sparse points
    Zhao, Jianyang
    Zhang, Lingmi
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2006, 25 (02): : 48 - 50