Frequency-temperature crossover in the conductivity of disordered Luttinger liquids

被引:5
|
作者
Rosenow, Bernd [1 ,2 ]
Glatz, Andreas [2 ,3 ]
Nattermann, Thomas [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[3] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 15期
关键词
D O I
10.1103/PhysRevB.76.155108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The temperature (T) and frequency (omega) dependent conductivity of weakly disordered Luttinger liquids is calculated in a systematic way both by perturbation theory and from a finite temperature renormalization group (RG) treatment to leading order in the disorder strength. Whereas perturbation theory results in omega/T scaling of the conductivity, such scaling is violated in the RG treatment. We also determine the nonlinear field dependence of the conductivity, whose power law scaling is different from that of temperature and frequency dependence.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Lagrangian model of the frequency-temperature behavior of SAW resonators
    Yong, Yook-Kong
    Pang, Xiangnan
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [22] AUTOMATIC RECORDING OF FREQUENCY-TEMPERATURE RESPONSE OF QUARTZ CRYSTALS
    FORSTER, HJ
    FREQUENZ, 1977, 31 (12) : 375 - 381
  • [23] FREQUENCY-TEMPERATURE BEHAVIOR OF CDS THICKNESS MODE RESONATORS
    SLIKER, TR
    KONEVAL, DJ
    HORA, CJ
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1969, SU16 (01): : 15 - +
  • [24] A STUDY OF QUARTZ TEMPERATURE SENSORS CHARACTERIZED BY ULTRALINEAR FREQUENCY-TEMPERATURE RESPONSES
    NAKAZAWA, M
    TAKEMAE, T
    MIYAHARA, A
    MATSUYAMA, K
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (06): : 828 - 834
  • [25] Finite-temperature spectroscopy of dirty helical Luttinger liquids
    Hsieh, Tzu-Chi
    Chou, Yang-Zhi
    Radzihovsky, Leo
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [26] A Dual Resonance Frequency-Selective Surface Temperature Sensor With Linear Frequency-Temperature Behavior
    Sun, Zhaofeng
    Peng, Bin
    Huang, Fei
    Yang, Yuntao
    Zhu, Jialiang
    He, Peng
    Zhang, Wanli
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9382 - 9389
  • [27] Improvement of rubidium clock frequency-temperature characteristic based on frequency compensation technology
    Qu, Bayi
    Song, Huansheng
    Zhou, Hui
    Li, Shanshan
    Meng, Qiang
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (11): : 2401 - 2407
  • [28] Development of High Frequency-Temperature Stability of OCXO for Aerospace Applications
    Yang, Lei
    Qin, Yuhao
    Huang, Jian
    Zhang, Xiaoqiang
    Jiang, Wei
    Cheng, Bing
    Feng, Zhifu
    Guo, Fanghong
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2015 PROCEEDINGS, VOL III, 2015, 342 : 351 - 358
  • [29] Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators
    Le Floch, J-M.
    Murphy, C.
    Hartnett, J. G.
    Madrangeas, V.
    Krupka, J.
    Cros, D.
    Tobar, M. E.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (01)
  • [30] High temperature Luttinger liquid conductivity in carbon nanotube bundles
    Danilchenko, B. A.
    Shpinar, L. I.
    Tripachko, N. A.
    Voitsihovska, E. A.
    Zelensky, S. E.
    Sundqvist, B.
    APPLIED PHYSICS LETTERS, 2010, 97 (07)