Modeling for a Greener Internet of Things: Carbon Footprint Planning and Allocation A Tutorial Approach Using Monte Carlo Simulation

被引:0
|
作者
Laghari, Samreen [1 ]
Niazi, Muaz A. [2 ]
机构
[1] Islamabad Model Coll Girls, Dept Comp Sci, F-6-2, Islamabad, Pakistan
[2] COMSATS Inst IT, Dept Comp Sci, Islamabad, Pakistan
关键词
Internet of Things; Modeling; Simulation; Carbon Footprint; Monte Carlo; ADAPTIVE COMMUNICATION-NETWORKS;
D O I
10.1109/FIT.2015.38
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Things involves the interconnectivity of various computing devices of all shapes, sizes and configurations forming complex networks. A key problem with the large-scale proliferation of such devices is the inability to manage their global environmental impact. While, some techniques exist for lowering energy wastage in the form of power-saving techniques, the modeling problem associated with the Carbon Footprint allocation in the Internet of Things has not been solved. In this paper, we propose first steps towards modeling and simulation of Carbon Footprint allocation in complex network scenarios as part of the Internet of Things. We do a comparative study using two baseline schemes of Carbon footprint allocation across a network of computing devices. Extensive simulation experiments demonstrate the effectiveness of the proposed approach in modeling and evaluation of the Carbon Footprint in the Internet of Things.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [41] MODELING FOR AN ALGAAS/GAAS HETEROSTRUCTURE DEVICE USING MONTE-CARLO SIMULATION
    TOMIZAWA, M
    YOSHII, A
    YOKOYAMA, K
    IEEE ELECTRON DEVICE LETTERS, 1985, 6 (07) : 332 - 334
  • [42] Intelligent Design Tolerance Allocation for Optimum Adaptability to Manufacturing Using a Monte Carlo Approach
    Umaras, Eduardo
    Barari, Ahmad
    Guerra Tsuzuki, Marcos de Sales
    IFAC PAPERSONLINE, 2019, 52 (10): : 165 - 170
  • [43] Monte Carlo Modeling and Simulation of the Varian TrueBeam LINAC Using Heterogeneous Computing
    Lin, H.
    Liu, T.
    Su, L.
    Shi, C.
    Tang, X.
    Adam, D.
    Bednarz, B.
    Xu, X.
    MEDICAL PHYSICS, 2017, 44 (06) : 3003 - 3003
  • [44] Modeling of Light Propagation in Turbid Medium Using Monte Carlo Simulation Technique
    Atif, M.
    Khan, A.
    Ikram, M.
    OPTICS AND SPECTROSCOPY, 2011, 111 (01) : 107 - 112
  • [45] Modeling of light propagation in turbid medium using Monte Carlo simulation technique
    M. Atif
    A. Khan
    M. Ikram
    Optics and Spectroscopy, 2011, 111 : 107 - 112
  • [46] Modeling of Unsteady Shock Tube Flows Using Direct Simulation Monte Carlo
    Zhu, Tong
    Li, Zheng
    Levin, Deborah A.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2014, 28 (04) : 623 - 634
  • [47] Modeling low-coherence enhanced backscattering using Monte Carlo simulation
    Subramanian, Hariharan
    Pradhan, Prabhakar
    Kim, Young L.
    Liu, Yang
    Li, Xu
    Backman, Vadim
    APPLIED OPTICS, 2006, 45 (24) : 6292 - 6300
  • [48] Tolerance allocation for an electronic system using neural network/Monte-Carlo approach
    Al-Mohammed, M
    Esteve, D
    Boucher, J
    SENSORS, SYSTEMS AND NEXT-GENERATION SATELLITES V, 2001, 4540 : 446 - 457
  • [49] Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method
    MIT, Cambridge, United States
    J Fluids Eng Trans ASME, 3 (464-468):
  • [50] Modeling Unobserved Heterogeneity Using Latent Profile Analysis: A Monte Carlo Simulation
    Peugh, James
    Fan, Xitao
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (04) : 616 - 639