A Generic Algorithm for Small Weight Discrete Logarithms in Composite Groups

被引:4
|
作者
May, Alexander [1 ]
Ozerov, Ilya [1 ]
机构
[1] Ruhr Univ Bochum, Fac Math, Horst Gortz Inst IT Secur, Bochum, Germany
来源
关键词
Cryptanalysis; Generic discrete logarithm; Small hamming weight; Representations;
D O I
10.1007/978-3-319-13051-4_17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let (G, center dot) be an arbitrary cyclic group of composite order N with G similar or equal to G(1) x G(2). We present a generic algorithm for solving the discrete logarithm problem in G with Hamming weight delta log N, delta is an element of (0, 1), in time (O) over tilde(root p + root vertical bar G(2)vertical bar(H(delta))), where p is the largest prime divisor in G(1) and H(center dot) is the binary entropy function. Our algorithm improves on the running time of Silver-Pohlig-Hellman's algorithm whenever delta not equal 1/2. Moreover, it improves on the Meet-in-the-Middle type algorithms of Heiman, Odlyzko and Coppersmith with running time (O) over tilde(root p + root vertical bar G(2)vertical bar(H(delta))) whenever p < vertical bar G vertical bar(H(delta)).
引用
收藏
页码:278 / 289
页数:12
相关论文
共 50 条
  • [41] DISCRETE QUASI-CONFORMAL GROUPS WITH SMALL DILATATION
    MCKEMIE, MJ
    MICHIGAN MATHEMATICAL JOURNAL, 1990, 37 (03) : 397 - 407
  • [42] An Optimization Algorithm for Minimizing Weight of the Composite Beam
    Jiang, Peng-yu
    Zhu-ming
    Xu, Lin Jin
    KNOWLEDGE DISCOVERY AND DATA MINING, 2012, 135 : 769 - 775
  • [43] Small stable generic graphs with infinite weight. Bipartite digraphs
    S. V. Sudoplatov
    Siberian Advances in Mathematics, 2007, 17 (1) : 37 - 48
  • [44] A Generic and Parallel Algorithm for 2D Image Discrete Contour Reconstruction
    Damiand, Guillaume
    Coeurjolly, David
    ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 : 792 - 801
  • [45] Modular representations of classical groups with small weight multiplicities
    Baranov A.A.
    Osinovskaya A.A.
    Suprunenko I.D.
    Journal of Mathematical Sciences, 2009, 161 (1) : 163 - 175
  • [46] Classification of the specific weight of small solution groups.
    von Wartenberg, H
    BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1909, 42 : 1126 - 1131
  • [47] Weight-value convergence of the SOM algorithm for discrete input
    Lin, SM
    Si, JN
    NEURAL COMPUTATION, 1998, 10 (04) : 807 - 814
  • [48] A fast discrete small-world optimization algorithm
    Tian, Zhipeng
    Zhu, Haiping
    Shao, Xinyu
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 560 - 564
  • [49] A recognition algorithm for non-generic classical groups over finite fields
    Niemeyer, AC
    Praeger, CE
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 : 223 - 253
  • [50] A fast algorithm for electrically small composite objects
    Chu, YH
    Chew, WC
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 3960 - 3963