Liquefied gas electrolytes for electrochemical energy storage devices

被引:292
|
作者
Rustomji, Cyrus S. [1 ]
Yang, Yangyuchen [2 ]
Kim, Tae Kyoung [2 ]
Mac, Jimmy [1 ]
Kim, Young Jin [2 ]
Caldwell, Elizabeth [2 ]
Chung, Hyeseung [1 ]
Meng, Shirley [1 ]
机构
[1] Univ Calif San Diego, Dept Nano Engn, La Jolla, CA 92121 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, Dept Mech & Aerosp Engn, La Jolla, CA 92121 USA
基金
美国国家科学基金会;
关键词
LOW-TEMPERATURE PERFORMANCE; DOUBLE-LAYER CAPACITORS; 1,1,1,2-TETRAFLUOROETHANE HFC 134A; LI-ION CELLS; DIELECTRIC-CONSTANT; LITHIUM METAL; SUPERCRITICAL TRIFLUOROMETHANE; ELECTRICAL-CONDUCTIVITY; AMMONIA SOLUTIONS; ORGANIC ESTERS;
D O I
10.1126/science.aal4263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical capacitors and lithium-ion batteries have seen little change in their electrolyte chemistry since their commercialization, which has limited improvements in device performance. Combining superior physical and chemical properties and a high dielectric-fluidity factor, the use of electrolytes based on solvent systems that exclusively use components that are typically gaseous under standard conditions show a wide potential window of stability and excellent performance over an extended temperature range. Electrochemical capacitors using difluoromethane show outstanding performance from -78 degrees to + 65 degrees C, with an increased operation voltage. The use of fluoromethane shows a high coulombic efficiency of similar to 97% for cycling lithium metal anodes, together with good cyclability of a 4-volt lithium cobalt oxide cathode and operation as low as -60 degrees C, with excellent capacity retention.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Nanowire Electrodes for Electrochemical Energy Storage Devices
    Mai, Liqiang
    Tian, Xiaocong
    Xu, Xu
    Chang, Liang
    Xu, Lin
    [J]. CHEMICAL REVIEWS, 2014, 114 (23) : 11828 - 11862
  • [32] High-Voltage Electrolytes for Aqueous Energy Storage Devices
    Wan, Fang
    Zhu, Jiacai
    Huang, Shuo
    Niu, Zhiqiang
    [J]. BATTERIES & SUPERCAPS, 2020, 3 (04) : 323 - 330
  • [33] Recent advances of hydrogel electrolytes in flexible energy storage devices
    Chan, Cheuk Ying
    Wang, Ziqi
    Jia, Hao
    Ng, Pui Fai
    Chow, Lung
    Fei, Bin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (04) : 2043 - 2069
  • [34] Roadmap on ionic liquid crystal electrolytes for energy storage devices
    Molahalli, Vandana
    Hirankittiwong, Pemika
    Sharma, Aman
    Laeim, Huddad
    Shetty, Apoorva
    Chattham, Nattaporn
    Hegde, Gurumurthy
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 305
  • [35] Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes
    Yu, Xingwen
    Manthiram, Arumugam
    [J]. JOULE, 2017, 1 (03) : 453 - 462
  • [36] Role of aqueous electrolytes on the performance of electrochemical energy storage device
    Iqbal, Muhammad Zahir
    Zakar, Sana
    Haider, Syed Shabhi
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 858 (858)
  • [37] Phase change electrolytes for combined electrochemical and thermal energy storage
    Brechtl, Jamieson
    Ullman, Andrew M.
    Li, Kai
    Yang, Guang
    Nanda, Jagjit
    Nawaz, Kashif
    Sacci, Robert L.
    [J]. ENERGY REPORTS, 2024, 11 : 3931 - 3940
  • [38] High-voltage hydrous electrolytes for electrochemical energy storage
    Huang, Miaofeng
    Zhen, Siron
    Ren, Xiaoliang
    Ju, Xin
    [J]. JOURNAL OF POWER SOURCES, 2020, 465
  • [39] GAS CONDENSATE AND LIQUEFIED PROPANE STORAGE
    JOHANSSON, S
    [J]. ERDOL & KOHLE ERDGAS PETROCHEMIE, 1986, 39 (11): : 484 - 484
  • [40] Advanced manufacturing approaches for electrochemical energy storage devices
    Hawes, Gillian F.
    Rehman, Sarish
    Rangom, Yverick
    Pope, Michael A.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2023, 68 (03) : 323 - 364