Modified Rate-dependent Hysteresis Modeling of Piezoelectric Actuator

被引:0
|
作者
Guo, Zhiyong [1 ]
Tian, Yanling [1 ]
Qi, Houjun [2 ]
机构
[1] Tianjin Univ, Key Lab Mech Theory & Equipment Design, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ Technol & Educ, Tianjin Key Lab High Cutting & Precis Machining, Tianjin 300222, Peoples R China
关键词
hysteresis; Prandtl-Ishlinskii model; rate-dependent; parameter identification; IDENTIFICATION; COMPENSATION;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A modified rate-dependent Prandtl-Ishlinskii (P-I) model with a hybrid structure is proposed to describe the hysteresis nonlinearity of piezoelectric (PZT). The traditional P-I model usually consists of a superposition of the weighted backlash operators and a superposition of the weighted dead-zone operators, which can be used to describe the hysteresis. Usually the modeling precision can be further improved by increasing the number of backlash operator or dead-zone operator, but this kind of method increases the response time of the model inevitably. The modified P-I model in this paper connects a cubic polynomial function with the traditional P-I model coordinately, compared with the previous way in improving modeling accuracy, this novel model shows higher precision, and lesser response time in same number of parameters. The parameter identification has been accomplished for the modified model, and in order to demonstrate its availability some experiments are performed.
引用
收藏
页码:206 / 210
页数:5
相关论文
共 50 条
  • [21] Discrete-time rate-dependent hysteresis modeling and parameter identification of piezoelectric actuators
    Shao, Muyao
    Wang, Yiru
    Gao, Zhiyuan
    Zhu, Xiaojin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (10) : 1968 - 1978
  • [22] Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification
    Yang X.-J.
    Hu J.-W.
    Li T.-S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (03): : 610 - 618
  • [23] Modeling and control of rate-dependent hysteresis characteristics of piezoelectric actuators based on analog filters
    Ji, Hua-wei
    Lv, Bo
    Wang, Yun-jun
    Yang, Fan
    Qi, An-qi
    Wu, Xin
    Ni, Jing
    FERROELECTRICS, 2023, 603 (01) : 94 - 115
  • [24] Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model
    Xiao, Shunli
    Li, Yangmin
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) : 1549 - 1557
  • [25] A Model Based Compensator for Rate-Dependent Hysteresis in Piezoelectric Actuators
    Zhang, Xinliang
    Tan, Yonghong
    Dong, Ruili
    Xie, Yangqiu
    2010 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2010,
  • [26] Adaptive rate-dependent feedforward controller for hysteretic piezoelectric actuator
    Tan, U. X.
    Widjaja, F.
    Latt, W. T.
    Veluvolu, K. C.
    Shee, C. Y.
    Riviere, C. N.
    Ang, W. T.
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 787 - +
  • [27] A Modified Duhem Model for Rate-Dependent Hysteresis Behaviors
    Gan, Jinqiang
    Mei, Zhen
    Chen, Xiaoli
    Zhou, Ye
    Ge, Ming-Feng
    MICROMACHINES, 2019, 10 (10)
  • [28] Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages
    Nie, Linlin
    Luo, Yiling
    Gao, Wei
    Zhou, Miaolei
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2023 - 2043
  • [29] Dynamic modeling of rate-dependent hysteresis in piezoelectric actuators based on expanded input space method
    College of Mechanical Engineering and Automation, Zhejiang Sci.-Technol. University, Hangzhou 310018, China
    不详
    Jixie Gongcheng Xuebao, 20 (169-174):
  • [30] Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages
    Linlin Nie
    Yiling Luo
    Wei Gao
    Miaolei Zhou
    Nonlinear Dynamics, 2022, 108 : 2023 - 2043