A generalizable and accessible approach to machine learning with global satellite imagery

被引:54
|
作者
Rolf, Esther [1 ,2 ]
Proctor, Jonathan [3 ]
Carleton, Tamma [4 ,5 ]
Bolliger, Ian [2 ,6 ]
Shankar, Vaishaal [1 ]
Ishihara, Miyabi [2 ,7 ]
Recht, Benjamin [1 ]
Hsiang, Solomon [2 ,5 ,8 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA USA
[2] Univ Calif Berkeley, Goldman Sch Publ Policy, Global Policy Lab, Berkeley, CA USA
[3] Harvard Univ, Ctr Environm & Data Sci Initiat, Cambridge, MA 02138 USA
[4] UC Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA USA
[5] Natl Bur Econ Res, Cambridge, MA 02138 USA
[6] Rhodium Grp, New York, NY USA
[7] Univ Calif Berkeley, Stat Dept, Berkeley, CA USA
[8] Ctr Econ Policy Res, London, England
关键词
BIG DATA;
D O I
10.1038/s41467-021-24638-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance. This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across prediction domains and has the potential to enhance accessibility of SIML across research disciplines.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A generalizable and accessible approach to machine learning with global satellite imagery
    Esther Rolf
    Jonathan Proctor
    Tamma Carleton
    Ian Bolliger
    Vaishaal Shankar
    Miyabi Ishihara
    Benjamin Recht
    Solomon Hsiang
    Nature Communications, 12
  • [2] A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery
    Berndt, E. B.
    Elmer, N. J.
    Junod, R. A.
    Fuell, K. K.
    Harkema, S. S.
    Burke, A. R.
    Feemster, C. M.
    EARTH AND SPACE SCIENCE, 2021, 8 (06)
  • [3] Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach
    Trujillo-Acatitla, Rubicel
    Tuxpan-Vargas, Jose
    Ovando-Vazquez, Cesare
    MARINE POLLUTION BULLETIN, 2022, 184
  • [4] Satellite imagery and machine learning for channel member selection
    Brei, Vinicius Andrade
    Rech, Nicole
    Bozkaya, Burcin
    Balcisoy, Selim
    Pentland, Alex Paul
    Silveira Netto, Carla Freitas
    INTERNATIONAL JOURNAL OF RETAIL & DISTRIBUTION MANAGEMENT, 2023, 51 (11) : 1552 - 1568
  • [5] Combining satellite imagery and machine learning to predict poverty
    Jean, Neal
    Burke, Marshall
    Xie, Michael
    Davis, W. Matthew
    Lobell, David B.
    Ermon, Stefano
    SCIENCE, 2016, 353 (6301) : 790 - 794
  • [6] Canopy classification using LiDAR: a generalizable machine learning approach
    Jones, R. Sky
    Elkadiri, Racha
    Momm, Henrique
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 2371 - 2384
  • [7] Canopy classification using LiDAR: a generalizable machine learning approach
    R. Sky Jones
    Racha Elkadiri
    Henrique Momm
    Modeling Earth Systems and Environment, 2023, 9 : 2371 - 2384
  • [8] Advancing forest carbon stocks' mapping using a hierarchical approach with machine learning and satellite imagery
    Illarionova, Svetlana
    Tregubova, Polina
    Shukhratov, Islomjon
    Shadrin, Dmitrii
    Efimov, Albert
    Burnaev, Evgeny
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Multispectral satellite imagery and machine learning for the extraction of shoreline indicators
    McAllister, Emma
    Payo, Andres
    Novellino, Alessandro
    Dolphin, Tony
    Medina-Lopez, Encarni
    COASTAL ENGINEERING, 2022, 174
  • [10] Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
    Agrawal, Ayush
    Petersen, Mark R.
    TOXICS, 2021, 9 (12)