Off-diagonal Geometric Phase of Two-Qubit System

被引:0
|
作者
Zhu, Guo-Qiang [1 ,2 ]
机构
[1] China Jiliang Univ, Lab Quantum Informat, Hangzhou 310018, Peoples R China
[2] China Jiliang Univ, Dept Appl Phys, Hangzhou 310018, Peoples R China
关键词
Geometric phase; Thermal state;
D O I
10.1007/s10773-010-0459-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper focuses on the off-diagonal geometric phase of the thermal state of a two-qubit system under the external magnetic field. The properties of geometric phases of the state in critical and non-critical regions are discussed respectively. The sudden change of structure of degeneracy at the critical point do not affect the geometric phase of the model. Increasing temperature tends to suppress the off-diagonal geometric phase. The relationship between the geometric phase and external magnetic field is also discussed.
引用
收藏
页码:2672 / 2679
页数:8
相关论文
共 50 条
  • [21] Off-diagonal condition
    Rodrigues, W.
    Garcia, A. R. G.
    Juriaans, S. O.
    Silva, J. C.
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 465 - 482
  • [22] Measurement of the off-diagonal geometric phase of a mixed-state photon via a Franson interferometer
    Li, Jian
    Jiang, Yun-Kun
    Tomita, Akihisa
    PHYSICS LETTERS A, 2007, 362 (04) : 269 - 272
  • [23] Off-diagonal condition
    W. Rodrigues
    A. R. G. Garcia
    S. O. Juriaans
    J. C. Silva
    Monatshefte für Mathematik, 2022, 198 : 465 - 482
  • [24] Ansatz for the quantum phase transition in a dissipative two-qubit system
    Zheng, Hang
    Lu, Zhiguo
    Zhao, Yang
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [25] Off-diagonal generalization of the mixed-state geometric phase -: art. no. 042112
    Filipp, S
    Sjöqvist, E
    PHYSICAL REVIEW A, 2003, 68 (04):
  • [26] Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect
    Xue, Liyuan
    Yu, Yanxia
    Cai, Xiaoya
    Pan, Hui
    Wang, Zisheng
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2016, 520 : 8 - 18
  • [27] The effect of perturbation of an off-diagonal entry pair on the geometric multiplicity of an eigenvalue
    Toyonaga, Kenji
    Johnson, Charles R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 615 : 112 - 142
  • [28] Geometric global quantum discord of two-qubit states
    肖运龙
    李陶
    费少明
    景乃桓
    王志玺
    李先清
    Chinese Physics B, 2016, 25 (03) : 64 - 68
  • [29] Geometric global quantum discord of two-qubit states
    Xiao, Yunlong
    Li, Tao
    Fei, Shao-Ming
    Jing, Naihuan
    Wang, Zhi-Xi
    Li-Jost, Xianqing
    CHINESE PHYSICS B, 2016, 25 (03)
  • [30] Nonuniversality in quantum wires with off-diagonal disorder: a geometric point of view
    Brouwer, PW
    Mudry, C
    Furusaki, A
    NUCLEAR PHYSICS B, 2000, 565 (03) : 653 - 663