Separable Beamforming For 3-D Medical Ultrasound Imaging

被引:24
|
作者
Yang, Ming [1 ]
Sampson, Richard [2 ]
Wei, Siyuan [1 ]
Wenisch, Thomas F. [2 ]
Chakrabarti, Chaitali [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Beamforming; decomposition; hardware accelerator; separable; 3-D ultrasound; 4D ULTRASOUND; 3D;
D O I
10.1109/TSP.2014.2371772
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-dimensional ultrasound imaging is a promising medical imaging technology because of its ease of use and improved accuracy in diagnosis. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications. In this paper, we present a separable beamforming method that greatly reduces computational complexity. Our method is based on decomposing the delay term in a way that minimizes the root-mean-square error caused by the decomposition. We analyze tradeoffs between the approximation error caused by the decomposition and computational complexity. Then, we present enhancements to the Sonic Millip3De hardware accelerator for ultrasound beamforming to implement separable beamforming. Using hardware synthesis targeting standard cells in 45 nm, we show that the proposed method allows us to boost the Sonic Millip3De frame rate from 1-2 Hz to 32 Hz while maintaining power consumption at 15 W. We validate image quality of our method using cyst phantom simulations in Field II. Our evaluation demonstrates that the proposed separable beamforming method can produce 3-D images with high quality that are comparable to those generated by non-separable beamforming.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [31] 3-D ultrasound
    Staedter, T
    TECHNOLOGY REVIEW, 2003, 106 (06): : 73 - 73
  • [32] 3-D Ultrasound Imaging Using Helicoid Array Transducers
    Kim, Young-Joong
    Wolf, Patrick D.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (03) : 697 - 706
  • [33] Quantification of thyroid volume using 3-D ultrasound imaging
    Kollorz, Eva N. K.
    Hahn, Dieter A.
    Linke, Rainer
    Goecke, Tamme W.
    Hornegger, Joachim
    Kuwert, Torsten
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 457 - 466
  • [34] 2-D to 3-D conversion: The future of medical imaging
    Bendelstein, Harold L.
    ENT-EAR NOSE & THROAT JOURNAL, 2017, 96 (12) : 450 - 451
  • [35] 3-D contrast enhanced ultrasound imaging of an in vivo chicken embryo with a sparse array and deep learning based adaptive beamforming
    Ossenkoppele, Boudewine W.
    Wei, Luxi
    Luijten, Ben
    Vos, Hendrik J.
    de Jong, Nico
    van Sloun, Ruud J. G.
    Verweij, Martin D.
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [36] IMPROVING LATERAL RESOLUTION IN 3-D IMAGING WITH MICRO-BEAMFORMING THROUGH ADAPTIVE BEAMFORMING BY DEEP LEARNING
    Ossenkoppele, Boudewine W.
    Luijten, Ben
    Bera, Deep
    De Jong, Nico
    Verweij, Martin D.
    Van Sloun, Ruud J. G.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (01): : 237 - 255
  • [37] Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging
    Li, Jiake
    Chen, Xiaodong
    Wang, Yi
    Shi, Yifeng
    Yu, Daoyin
    ACOUSTICAL PHYSICS, 2017, 63 (02) : 229 - 236
  • [38] Dual-Domain Compressed Beamforming for Medical Ultrasound Imaging
    Zhang, Bo
    Robert, Jean-Luc
    David, Guillaume
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [39] Generalized sidelobe canceler beamforming applied to medical ultrasound imaging
    Jiake Li
    Xiaodong Chen
    Yi Wang
    Yifeng Shi
    Daoyin Yu
    Acoustical Physics, 2017, 63 : 229 - 236
  • [40] Minimum variance adaptive beamforming applied to medical ultrasound imaging
    Synnevag, JF
    Austeng, A
    Holm, S
    2005 IEEE Ultrasonics Symposium, Vols 1-4, 2005, : 1199 - 1202