A framework for characterizing spatio-temporal data models

被引:0
|
作者
Parent, C [1 ]
机构
[1] Univ Lausanne, HEC, INFORGE, CH-1015 Lausanne, Switzerland
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a framework for analyzing and comparing spatio-temporal data models. It focuses on data modeling concepts. The three dimensions of spatio-temporal models, structure, space, and time are described: concepts that are - or should be - supported are defined. The similarity between space and time concepts is emphasized, as well as the importance of orthogonality among the three dimensions. Any structural construct may be spatial and/or temporal, thus allowing to naturally describe moving and deforming objects as well as spatio-temporal continuous fields.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [41] CHARACTERIZING THE SPATIO-TEMPORAL DYNAMICS OF DENGUE IN BRAZIL
    Takahashi, Saki
    Rodriguez-Barraquer, Isabel
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 57 - 57
  • [42] A software framework for construction of process-based stochastic spatio-temporal models and data assimilation
    Karssenberg, Derek
    Schmitz, Oliver
    Salamon, Peter
    de Jong, Kor
    Bierkens, Marc F. P.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (04) : 489 - 502
  • [43] Characterizing transmission and control of the SARS epidemic: Novel stochastic spatio-temporal models
    Liu, Zihong
    He, Ku
    Yang, Lei
    Bian, Chao
    Wang, Zhihua
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 7463 - 7469
  • [44] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [45] Learning Localized Spatio-Temporal Models From Streaming Data
    Osama, Muhammad
    Zachariah, Dave
    Schon, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [46] VAR models for spatio-temporal structures: An application to environmental data
    Lamberti, A
    Naccarato, A
    New Developments in Classification and Data Analysis, 2005, : 243 - 250
  • [47] Choosing suitable linear coregionalization models for spatio-temporal data
    S. De Iaco
    M. Palma
    D. Posa
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1419 - 1434
  • [48] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [49] Predictive spatio-temporal models for spatially sparse environmental data
    de Luna, X
    Genton, MG
    STATISTICA SINICA, 2005, 15 (02) : 547 - 568
  • [50] Spatio-temporal models and languages:: An approach based on data types
    Güting, RH
    Böhlen, MH
    Erwig, M
    Jensen, CS
    Lorentzos, N
    Nardelli, E
    Schneider, M
    Viqueira, JRR
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 117 - 176