Lower bounds for computing geometric spanners and approximate shortest paths

被引:16
|
作者
Chen, DZ
Das, G
Smid, H [1 ]
机构
[1] Univ Magdeburg, Dept Comp Sci, D-39106 Magdeburg, Germany
[2] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
computational geometry; spanner graphs; shortest paths; lower bounds;
D O I
10.1016/S0166-218X(00)00280-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problems of constructing geometric spanners, possibly containing Steiner points, for a set of n input points in d-dimensional space R-d, and constructing spanners and approximate shortest paths among a collection of polygonal obstacles on the plane. The complexities of these problems are shown to be Omega (n log n) in the algebraic computation tree model. Since O(n log n)-time algorithms are known for solving these problems, our lower bounds are tight up to a constant factor. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 50 条
  • [21] Approximating geometric bottleneck shortest paths
    Bose, P
    Maheshwari, A
    Narasimhan, G
    Smid, M
    Zeh, N
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 29 (03): : 233 - 249
  • [22] Approximating geometric bottleneck shortest paths
    Bose, P
    Maheshwari, A
    Narasimhan, G
    Smid, M
    Zeh, N
    [J]. STACS 2003, PROCEEDINGS, 2003, 2607 : 38 - 49
  • [23] Lower bounds for additive spanners, emulators, and more
    Woodruff, David P.
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 389 - 398
  • [24] A Hierarchy of Lower Bounds for Sublinear Additive Spanners
    Abboud, Amir
    Bodwin, Greg
    Pettie, Seth
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 568 - 576
  • [25] A HIERARCHY OF LOWER BOUNDS FOR SUBLINEAR ADDITIVE SPANNERS
    Abboud, Amir
    Bodwin, Greg
    Pettie, Seth
    [J]. SIAM JOURNAL ON COMPUTING, 2018, 47 (06) : 2203 - 2236
  • [26] Constant-Round Spanners and Shortest Paths in Congested Clique and MPC
    Dory, Michal
    Fischer, Orr
    Khoury, Seri
    Leitersdorf, Dean
    [J]. PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21), 2021, : 223 - 233
  • [27] Computing shortest paths with comparisons and additions
    Pettie, S
    Ramachandran, V
    [J]. PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 267 - 276
  • [28] Computing homotopic shortest paths efficiently
    Efrat, A
    Kobourov, SG
    Lubiw, A
    [J]. ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 411 - 423
  • [29] COMPUTING SETS OF SHORTEST PATHS IN A GRAPH
    MINIEKA, E
    [J]. COMMUNICATIONS OF THE ACM, 1974, 17 (06) : 351 - 353
  • [30] Computing Shortest Paths amid Pseudodisks
    Chen, Danny Z.
    Wang, Haitao
    [J]. PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 309 - 326