PEG-based Polyplex Design for Gene and Nucleotide Delivery

被引:15
|
作者
Vachutinsky, Yelena [1 ]
Kataoka, Kazunori [1 ]
机构
[1] Univ Tokyo, Dept Bioengn, Grad Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
关键词
blood circulation; non-viral gene delivery; poly(ethylene glycol) (PEG); polyplex micelles; transfection efficiency; POLYION COMPLEX MICELLES; BLOCK-COPOLYMER MICELLES; PLASMID DNA; MOLECULAR-WEIGHT; IN-VIVO; POLY(ETHYLENE GLYCOL); SYSTEMIC DELIVERY; INTRACELLULAR DELIVERY; EXTENDED CIRCULATION; STERIC STABILIZATION;
D O I
10.1002/ijch.201000018
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gene delivery is a multiple-step process which depends on the ability of a gene carrier to overcome several biological barriers and safely deliver a transgene to its target cells. Polymeric gene delivery systems, e.g., polyplexes, have emerged as a safe alternative to viral vectors. Poly(ethylene glycol) (PEG) conjugation is a common modification approach to provide polyplexes with prolonged circulation time and reduced toxicity, and to allow their accumulation in tumor tissue through the enhanced permeability and retention (EPR) effect. This review describes physicochemical properties related to the biological activity of PEG-based polyplexes, and approaches undertaken to promote a rational design for their in vivo applications.
引用
收藏
页码:175 / 184
页数:10
相关论文
共 50 条
  • [21] Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery
    Li, Junjie
    Chen, Qixian
    Zha, Zengshi
    Li, Hui
    Toh, Kazuko
    Dirisala, Anjaneyulu
    Matsumoto, Yu
    Osada, Kensuke
    Kataoka, Kazunori
    Ge, Zhishen
    JOURNAL OF CONTROLLED RELEASE, 2015, 209 : 77 - 87
  • [22] Fibroblast activation and contractility on PEG-based hydrogels
    Faour, Sara
    Vezy, Cyrille
    Salesse, Stephanie
    Langlois, Benoit
    Dedieu, Stephane
    Jaffiol, Rodolphe
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 405A - 405A
  • [23] Meso-Ordered PEG-Based Particles
    Wallin, Maria
    Altskar, Annika
    Nordstierna, Lars
    Andersson, Martin
    LANGMUIR, 2015, 31 (01) : 13 - 16
  • [24] Biocompatibility of PEG-based hydrogels in primate brain
    Bjugstad, K. B.
    Redmond, D. E., Jr.
    Lampe, K. J.
    Kern, D. S.
    Sladek, J. R., Jr.
    Mahoney, M. J.
    CELL TRANSPLANTATION, 2008, 17 (04) : 409 - 415
  • [25] Advances in PEG-based ABC terpolymers and their applications
    Zhang, Xiaojin
    Dai, Yu
    Dai, Guofei
    Deng, Chunhui
    RSC ADVANCES, 2020, 10 (36) : 21602 - 21614
  • [26] Thermogelation of PEG-Based Macromolecules of Controlled Architecture
    Fechler, Nina
    Badi, Nezha
    Schade, Kristin
    Pfeifer, Sebastian
    Lutz, Jean-Francois
    MACROMOLECULES, 2009, 42 (01) : 33 - 36
  • [27] Biocompatibility of PEG-Based hydrogels in primate brain
    Bjugstad, K. B.
    Mahoney, M.
    Redmond, D. E.
    Lampe, K.
    Cornelius, S. K.
    Sladek, J. R.
    CELL TRANSPLANTATION, 2007, 16 (03) : 315 - 315
  • [28] PEG-Based Microgels to Modify Biomaterials Surfaces
    Wu, Yong
    Wang, Qichen
    Libera, Matthew
    MACROMOLECULAR SYMPOSIA, 2013, 329 (01) : 35 - 40
  • [29] PEG-based thermogels: Applicability in physiological media
    Badi, Nezha
    Lutz, Jean-Francois
    JOURNAL OF CONTROLLED RELEASE, 2009, 140 (03) : 224 - 229
  • [30] PEG-based block catiomers possessing DNA anchoring and endosomal escaping functions to form polyplex micelles with improved stability and high transfection efficacy
    Miyata, Kanjiro
    Fukushima, Shigeto
    Nishiyama, Nobuhiro
    Yamasaki, Yulchi
    Kataoka, Kazunori
    JOURNAL OF CONTROLLED RELEASE, 2007, 122 (03) : 252 - 260